Journal of Computational Neuroscience

, Volume 31, Issue 2, pp 401–418 | Cite as

Effects of conduction delays on the existence and stability of one to one phase locking between two pulse-coupled oscillators



Gamma oscillations can synchronize with near zero phase lag over multiple cortical regions and between hemispheres, and between two distal sites in hippocampal slices. How synchronization can take place over long distances in a stable manner is considered an open question. The phase resetting curve (PRC) keeps track of how much an input advances or delays the next spike, depending upon where in the cycle it is received. We use PRCs under the assumption of pulsatile coupling to derive existence and stability criteria for 1:1 phase-locking that arises via bidirectional pulse coupling of two limit cycle oscillators with a conduction delay of any duration for any 1:1 firing pattern. The coupling can be strong as long as the effect of one input dissipates before the next input is received. We show the form that the generic synchronous and anti-phase solutions take in a system of two identical, identically pulse-coupled oscillators with identical delays. The stability criterion has a simple form that depends only on the slopes of the PRCs at the phases at which inputs are received and on the number of cycles required to complete the delayed feedback loop. The number of cycles required to complete the delayed feedback loop depends upon both the value of the delay and the firing pattern. We successfully tested the predictions of our methods on networks of model neurons. The criteria can easily be extended to include the effect of an input on the cycle after the one in which it is received.


Synchrony Pulse-coupling Oscillator Conduction delays 

Supplementary material

10827_2011_315_Fig10_ESM.jpg (123 kb)
Figure S1

Firing pattern for scheme B in Fig. 2. A. Firing pattern for the lowest possible k value for this scheme, which is 2. B. General firing pattern for arbitrary j1 and j2 (JPEG 123 kb)

10827_2011_315_MOESM1_ESM.eps (1.4 mb)
High resolution image (EPS 1.37 mb)
10827_2011_315_Fig11_ESM.jpg (119 kb)
Figure S2

Firing pattern for scheme C in Fig. 2. A. Firing pattern for the lowest possible k value for this scheme, which is 2. B. General firing pattern for arbitrary j1 and j2 (JPEG 119 kb)

10827_2011_315_MOESM2_ESM.eps (1.4 mb)
High resolution image (EPS 1.37 mb)
10827_2011_315_Fig12_ESM.jpg (140 kb)
Figure S3

Figure S1. Firing pattern for scheme D in Fig. 2. A. Firing pattern for the lowest possible k value for this scheme, which is 3. B. General firing pattern for arbitrary j1 and j2 (JPEG 140 kb)

10827_2011_315_MOESM3_ESM.eps (1.4 mb)
High resolution image (EPS 1.38 mb)


  1. Achuthan, S., & Canavier, C. C. (2009). Phase resetting curves determine synchronization, phase-locking, and clustering in networks of neural oscillators. The Journal of Neuroscience, 29, 5218–33.PubMedCrossRefGoogle Scholar
  2. Acker, C. D., Kopell, N., & White, J. A. (2003). Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. Journal of Computational Neuroscience, 15, 71–90.PubMedCrossRefGoogle Scholar
  3. Andersen, P., Silfvenius, H., Sundberg, S. H., Sveen, O., & Wigström, H. (1978). Functional characteristics of unmyelinated fibres in the hippocampal cortex. Brain Research, 144(1), 11–8.PubMedCrossRefGoogle Scholar
  4. Canavier, C. C., & Achuthan, S. A. (2010). Pulse coupled oscillators and the phase resetting curve. Mathematical Biosciences, 226, 77–96.PubMedCrossRefGoogle Scholar
  5. Canavier, C. C,, Fernandez, F., Kispersky, T., & White, J. A. (2009). Generic solutions for pulse coupled oscillatory neurons: Synchrony, antiphase, and leader/follower. Program No. 321.6. 2009 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2009. Online.Google Scholar
  6. Chandrasekaran, L., Achuthan, S., & Canavier, C. C. (2011). Stability of two cluster solutions in pulse coupled networks of neural oscillators. J. Computational Neurosci.Google Scholar
  7. Crook, S. M., Ermentrout, G. B., & Bower, J. M. (1998). Dendritic and synaptic effects in systems of coupled cortical oscillators. Journal of Computational Neuroscience, 5, 315–329.PubMedCrossRefGoogle Scholar
  8. D’Huys, O., Vicente, R., Erneux, T., Danckaert, J., & Fischer, I. (2008). Synchronization properties of network motifs: influence of coupling delay and symmetry. Chaos, 18, 037116.PubMedCrossRefGoogle Scholar
  9. Dhamala, M., Jirsa, V. K., & Ding, M. (2004). Enhancement of neural synchrony by time delay. Physical Review Letters, 92, 074104.PubMedCrossRefGoogle Scholar
  10. Dror, R. O., Canavier, C. C., Butera, R. J., Clark, J. W., & Byrne, J. H. (1999). A mathematical criterion based on phase response curves for the stability of a ring network of oscillators. Biological Cybernetics, 80, 11–23.PubMedCrossRefGoogle Scholar
  11. Earl, M. G., & Strogatz, S. H. (2003). Synchronization in oscillator networks with delayed coupling: a stability criterion. Physical Review E, 67, 036204.CrossRefGoogle Scholar
  12. Engel, A. K., Konig, P., Kreitner, A. K., & Singer, W. (1991). Interhemispheric synchronization of oscillatory neural responses in cat visual cortex. Science, 252, 1177–1179.CrossRefGoogle Scholar
  13. Ermentrout, G. B., & Kopell, N. (1998). Fine structure of neural spiking and synchronization in the presence of conduction delays. Proceedings of the National Academy of Sciences of the United States of America, 95, 1259–1264.PubMedCrossRefGoogle Scholar
  14. Ernst, U., Pawelzik, K., & Geisel, T. (1995). Synchronization induced by temporal delays in pulse-couple oscillators. Physical Review Letters, 74, 1570–1573.PubMedCrossRefGoogle Scholar
  15. Ernst, U., Pawelzik, K., & Geisel, T. (1998). Delay-induced multistable synchronization of biological oscillators. Physical review E, 57, 2150–2162.CrossRefGoogle Scholar
  16. Fischer, I., Vicente, R., Buldu, J. M., Peil, M., Mirasso, C. R., Torrent, M. C., et al. (2006). Zero-lag long range synchronization via dynamical relaying. Physical Review Letters, 97, 123902.PubMedCrossRefGoogle Scholar
  17. Foss, J. (1999). Control of multistability in neural feedback systems with delay (PhD thesis). Chicago: The University of Chicago.Google Scholar
  18. Foss, J., & Milton, J. (2000). Multistability in recurrent neural loops arising from delay. Journal of Neurophysiology, 84, 975–985.PubMedGoogle Scholar
  19. Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Neuroscience, 9, 1364–68.CrossRefGoogle Scholar
  20. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., et al. (2009). GNU scientific library reference manual (3rd ed.). United Kingdom: Network Theory Ltd.Google Scholar
  21. Golubitsky, M., Stewart, I. N., & Schaeffer, D. G. (1988). Singularities and Groups in Bifurcation Theory: Vol. II, Applied Mathematical Sciences 69. Springer-Verlag, New York.Google Scholar
  22. Izhikevich, E. M. (1998). Phase models with explicit time delays. Physical Review E, 58, 905–908.CrossRefGoogle Scholar
  23. Karbowski, J., & Kopell, N. (2000). Multispikes and synchronization in a large neural network with temporal delays. Neural Computation, 12, 1573–1606.PubMedCrossRefGoogle Scholar
  24. Ko, T. W., & Ermentrout, B. (2009). Delays and weakly coupled neuronal oscillators. Philosophical Transactions of the Royal Society, 367, 1097–1115.CrossRefGoogle Scholar
  25. Konig, P., & Schillen, T. B. (1991). Stimulus-dependent assembly formation of oscillatory responses: I. Synchronization. Neural Computation, 3, 155–166.CrossRefGoogle Scholar
  26. Konig, P., Engel, A. K., & Singer, W. (1995). Relation between oscillatory activity and long range synchronization in cat visual cortex. Proceedings of the National academy of Sciences of the United States of America, 92, 290–294.PubMedCrossRefGoogle Scholar
  27. Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W., & Rodriguez, E. (2007). Synchronization of neural activity across cortical areas correlates with conscious perception. The Journal of Neuroscience, 27, 2858–2865.PubMedCrossRefGoogle Scholar
  28. Mirollo, R. E., & Strogatz, S. H. (1990). Synchronization of pulse-coupled biological oscillators. SIAM Journal on Applied Mathematics, 50, 1645–1662.CrossRefGoogle Scholar
  29. Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.PubMedCrossRefGoogle Scholar
  30. Oh, M., & Matveev, V. (2009). Loss of phase-locking in non-weakly coupled inhibitory networks of type-I model neurons. Journal of Computational Neuroscience, 26, 303–320.PubMedCrossRefGoogle Scholar
  31. Oprisan, S. A., Prinz, A. A., & Canavier, C. C. (2004). Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophysical J., 87, 2283–2298.CrossRefGoogle Scholar
  32. Perez Velasquez, J. L., Galan, R. F., Dominguez, L. G., Leshchenko, Y., Lo, S., Belkas, J., et al. (2007). Phase response curves in the characterization of epileptiform activity. Physical Review E, 76, 061912.CrossRefGoogle Scholar
  33. Pervouchine, D. D., Netoff, T. I., Rotstein, H. G., White, J. A., Cunningham, M. O., Whittington, M. A., et al. (2006). Low-dimensional maps encoding dynamics in entorhinal cortex and hippocampus. Neural Computation, 18, 1–34.CrossRefGoogle Scholar
  34. Peskin, CS. (1975). Mathematical aspects of heart physiology. New York: Courant Institute of Mathematical Sciences, New York, 268–278.Google Scholar
  35. Prasad, A., Dana, S. K., Kamatak, R., Kurths, J., Blasius, B., & Ramaswamy, R. (2008). Universal occurrence of the phase-flip bifurcation in time-delay coupled systems. Chaos, 18, 023111.PubMedCrossRefGoogle Scholar
  36. Remme, M. W. H., Lengyel, M., & Gutkin, B. S. (2009). The role of ongoing dendritic oscillations in single-neuron dynamics. PLoS Computational Biology, 5(9), e1000493.PubMedCrossRefGoogle Scholar
  37. Rinzel, J., & Ermentrout, G. B. (1998). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling from ions to networks. Cambridge: MIT.Google Scholar
  38. Schuster, H. G., & Wagner, P. (1989). Mutual entrainment of two limit cycle oscillators with time delayed coupling. Prog. Theor. Phys., 81, 939.CrossRefGoogle Scholar
  39. Schuster, H. G., & Wagner, P. (1990). A model for neuronal oscillations in the visual cortex. 2. Phase description of the feature dependent synchronization. Biological Cybernetics, 64, 83–85.PubMedCrossRefGoogle Scholar
  40. Sieling, F. H., Canavier, C. C., & Prinz, A. A. (2009). Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition. Journal of Neurophysiology, 102(1), 69–84.PubMedCrossRefGoogle Scholar
  41. Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55, 349–374.PubMedCrossRefGoogle Scholar
  42. Singer, W. (1999). Neural synchrony: a versatile code for definition of relations. Neuron, 24, 49–65.PubMedCrossRefGoogle Scholar
  43. Timme, M., & Wolf, F. (2008). The simplest problem in the collective dynamics of neural networks: is synchrony stable? Nonlinearity, 21, 1579–1599.CrossRefGoogle Scholar
  44. Timme, M., Wolf, F., & Geisel, T. (2002). Coexistence of regular and irregular dynamics in complex networks of pulse coupled oscillators. Physical Review Letters, 89, 258701.PubMedCrossRefGoogle Scholar
  45. Tort, A. B. L., Rotstein, H. G., Dugladze, T., Gloveli, T., & Kopell, N. J. (2007). On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. PNAS, 104, 13490–13495.PubMedCrossRefGoogle Scholar
  46. Traub, R. D., Whittington, M. A., Stanford, I. M., & Jefferys, J. G. R. (1996). A mechanism for the generation of long-range synchronous fast oscillations in the cortex. Nature, 383, 621–624.PubMedCrossRefGoogle Scholar
  47. Uhlhass, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunction and pathophysiology. Neuron, 52, 155–158.CrossRefGoogle Scholar
  48. Uhlhass, P. J., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolic, D., et al. (2009). Neural synchrony in cortical networks: history concept and current status. Frontiers in Integrative Neuroscience. doi:10.3389.Google Scholar
  49. Vicente, R., Gollo, L. L., Mirasso, C. R., Fischer, I., & Pipa, G. (2008). Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. PNAS, 105, 17157–17162.PubMedCrossRefGoogle Scholar
  50. Wang, X. J., & Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of Neuroscience, 16, 6402–6413.PubMedGoogle Scholar
  51. Womelsdorf, T., Schoeffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., et al. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316, 1609–1612.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Michael Marmaduke Woodman
    • 1
    • 2
  • Carmen C. Canavier
    • 1
  1. 1.Neuroscience Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansUSA
  2. 2.Université de la MéditerranéeInstitut des Sciences du Mouvement, UMR6233 CNRSMarseilleFrance

Personalised recommendations