Journal of Computational Neuroscience

, Volume 31, Issue 2, pp 329–346 | Cite as

The use of automated parameter searches to improve ion channel kinetics for neural modeling

  • Eric B. Hendrickson
  • Jeremy R. Edgerton
  • Dieter JaegerEmail author


The voltage and time dependence of ion channels can be regulated, notably by phosphorylation, interaction with phospholipids, and binding to auxiliary subunits. Many parameter variation studies have set conductance densities free while leaving kinetic channel properties fixed as the experimental constraints on the latter are usually better than on the former. Because individual cells can tightly regulate their ion channel properties, we suggest that kinetic parameters may be profitably set free during model optimization in order to both improve matches to data and refine kinetic parameters. To this end, we analyzed the parameter optimization of reduced models of three electrophysiologically characterized and morphologically reconstructed globus pallidus neurons. We performed two automated searches with different types of free parameters. First, conductance density parameters were set free. Even the best resulting models exhibited unavoidable problems which were due to limitations in our channel kinetics. We next set channel kinetics free for the optimized density matches and obtained significantly improved model performance. Some kinetic parameters consistently shifted to similar new values in multiple runs across three models, suggesting the possibility for tailored improvements to channel models. These results suggest that optimized channel kinetics can improve model matches to experimental voltage traces, particularly for channels characterized under different experimental conditions than recorded data to be matched by a model. The resulting shifts in channel kinetics from the original template provide valuable guidance for future experimental efforts to determine the detailed kinetics of channel isoforms and possible modulated states in particular types of neurons.


Neuron model Computation Globus pallidus Computer simulation Evolutionary algorithms 



This project was supported by National Institute of Neurological Disorders and Stroke (NINDS) grant R01-NS039852 to DJ and National Science Foundation (NSF) DGE-0333411 IGERT fellowship to EBH. Morphological reconstructions and electrophysiological recordings of the 3 neurons modeled in this study were performed by Dr. Jesse Hanson.

Conflict of Interest Notification

To the best of our knowledge, no conflicts of interests exist related to the work we present here.

Supplementary material

10827_2010_312_MOESM1_ESM.pdf (2.6 mb)
ESM 1 (PDF 2657 kb)


  1. Achard, P., & De Schutter, E. (2006). Complex parameter landscape for a complex neuron model. PLoS Computational Biology, 2, 794–804.CrossRefGoogle Scholar
  2. Allen, M., Heinzmann, A., Noguchi, E., Abecasis, G., Broxholme, J., Ponting, C. P., et al. (2003). Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nature Genetics, 35, 258–263.PubMedCrossRefGoogle Scholar
  3. Bar-Yehuda, D., & Korngreen, A. (2008). Space-clamp problems when voltage clamping neurons expressing voltage-gated conductances. Journal of Neurophysiology, 99, 1127–1136.PubMedCrossRefGoogle Scholar
  4. Bush, K., Knight, J., & Anderson, C. (2005). Optimizing conductance parameters of cortical neural models via electrotonic partitions. Neural Networks, 18, 488–496.PubMedCrossRefGoogle Scholar
  5. Clerc, M., & Kennedy, J. (2002). The particle swarm—Explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6, 58–73.CrossRefGoogle Scholar
  6. Colbert, C. M., & Johnston, D. (1996). Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. The Journal of Neuroscience, 16, 6676–6686.PubMedGoogle Scholar
  7. Davison, A. P., Feng, J. F., & Brown, D. (2000). A reduced compartmental model of the mitral cell for use in network models of the olfactory bulb. Brain Research Bulletin, 51, 393–399.PubMedCrossRefGoogle Scholar
  8. Druckmann, S., Berger, T. K., Hill, S., Schurmann, F., Markram, H., & Segev, I. (2008). Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data. Biological Cybernetics, 99, 371–379.PubMedCrossRefGoogle Scholar
  9. Gentet, L. J., Stuart, G. J., & Clements, J. D. (2000). Direct measurement of specific membrane capacitance in neurons. Biophysical Journal, 79, 314–320.PubMedCrossRefGoogle Scholar
  10. Gerken, W. C., Purvis, L. K., & Butera, R. J. (2006). Genetic algorithm for optimization and specification of a neuron model. Neurocomputing, 69, 1039–1042.CrossRefGoogle Scholar
  11. Grieco, T. M., Afshari, F. S., & Raman, I. M. (2002). A role for phosphorylation in the maintenance of resurgent sodium current in cerebellar Purkinje neurons. The Journal of Neuroscience, 22, 3100–3107.PubMedGoogle Scholar
  12. Gunay, C., Edgerton, J. R., & Jaeger, D. (2008). Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. The Journal of Neuroscience, 28, 7476–7491.PubMedCrossRefGoogle Scholar
  13. Hanson, J. E., Smith, Y., & Jaeger, D. (2004). Sodium channels and dendritic spike initiation at excitatory synapses in globus pallidus neurons. The Journal of Neuroscience, 24, 329–340.PubMedCrossRefGoogle Scholar
  14. Hendrickson, E. B., Edgerton, J. R., & Jaeger, D. (2010). The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. Journal of Computational Neuroscience, Online First™, 10 July 2010.Google Scholar
  15. Herzog, R. I., Liu, C. J., Waxman, S. G., & Cummins, T. R. (2003). Calmodulin binds to the C terminus of sodium channels Na(v)1.4 and Na(v)1.6 and differentially modulates their functional properties. The Journal of Neuroscience, 23, 8261–8270.PubMedGoogle Scholar
  16. Hoffman, D. A., & Johnston, D. (1998). Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. The Journal of Neuroscience, 18, 3521–3528.PubMedGoogle Scholar
  17. Jerng, H. H., Qian, Y., & Pfaffinger, P. J. (2004). Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophysical Journal, 87, 2380–2396.PubMedCrossRefGoogle Scholar
  18. Keren, N., Peled, N., & Korngreen, A. (2005). Constraining compartmental models using multiple voltage recordings and genetic algorithms. Journal of Neurophysiology, 94, 3730–3742.PubMedCrossRefGoogle Scholar
  19. Kole, M. H. P., Ilschner, S. U., Kampa, B. M., Williams, S. R., Ruben, P. C., & Stuart, G. J. (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nature Neuroscience, 11, 178–186.PubMedCrossRefGoogle Scholar
  20. McCormick, D. A., Shu, Y. S., & Yu, Y. G. (2007). Hodgkin and Huxley model—still standing? Nature, 445, E1–E2.PubMedCrossRefGoogle Scholar
  21. Mercer, J. N., Chan, C. S., Tkatch, T., Held, J., & Surmeier, D. J. (2007). Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. The Journal of Neuroscience, 27, 13552–13566.PubMedCrossRefGoogle Scholar
  22. Myers, J. L., & Well, A. D. (2003). Research design and statistical analysis (2nd ed.). Mahwah: Lawrence Erlbaum Associates, Inc.Google Scholar
  23. Newton, A. C. (1995). Protein-kinase-c—structure, function, and regulation. The Journal of Biological Chemistry, 270, 28495–28498.PubMedCrossRefGoogle Scholar
  24. Oltedal, L., Veruki, M. L., & Hartveit, E. (2009). Passive membrane properties and electrotonic signal processing in retinal rod bipolar cells. Journal of Physiology, London, 587, 829–849.CrossRefGoogle Scholar
  25. Park, K. S., Mohapatra, D. P., Misonou, H., & Trimmer, J. S. (2006). Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science, 313, 976–979.PubMedCrossRefGoogle Scholar
  26. Park, K. S., Yang, J. W., Seikel, E., & Trimmer, J. S. (2008). Potassium channel phosphorylation in excitable cells: providing dynamic functional variability to a diverse family of ion channels. Physiology, 23, 49–57.PubMedCrossRefGoogle Scholar
  27. Prinz, A. A., Billimoria, C. P., & Marder, E. (2003). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of Neurophysiology, 90, 3998–4015.PubMedCrossRefGoogle Scholar
  28. Rossie, S. (1999). Regulation of voltage-sensitive sodium and calcium channels by phosphorylation. In Ion channel regulation (pp. 23–48).Google Scholar
  29. Roth, A., & Hausser, M. (2001). Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. Journal of Physiology, London, 535, 445–472.CrossRefGoogle Scholar
  30. Routh, B. N., Johnston, D., Harris, K., & Chitwood, R. A. (2009). Anatomical and electrophysiological comparison of CA1 pyramidal neurons of the rat and mouse. Journal of Neurophysiology, 102, 2288–2302.PubMedCrossRefGoogle Scholar
  31. Rush, A. M., Wittmack, E. K., Tyrrell, L., Black, J. A., Dib-Hajj, S. D., & Waxman, S. G. (2006). Differential modulation of sodium channel Na(v)1.6 by two members of the fibroblast growth factor homologous factor 2 subfamily. The European Journal of Neuroscience, 23, 2551–2562.PubMedCrossRefGoogle Scholar
  32. Rusnak, F., & Mertz, P. (2000). Calcineurin: form and function. Physiological Reviews, 80, 1483–1521.PubMedGoogle Scholar
  33. Schulz, D. J., Goaillard, J. M., & Marder, E. (2006). Variable channel expression in identified single and electrically coupled neurons in different animals. Nature Neuroscience, 9, 356–362.PubMedCrossRefGoogle Scholar
  34. Stuart, G., & Spruston, N. (1998). Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. The Journal of Neuroscience, 18, 3501–3510.PubMedGoogle Scholar
  35. Taylor, A. L., Goaillard, J. M., & Marder, E. (2009). How multiple conductances determine electrophysiological properties in a multicompartment model. The Journal of Neuroscience, 29, 5573–5586.PubMedCrossRefGoogle Scholar
  36. Tien, J. H., & Guckenheimer, J. (2008). Parameter estimation for bursting neural models. Journal of Computational Neuroscience, 24, 358–373.PubMedCrossRefGoogle Scholar
  37. Tkatch, T., Baranauskas, G., & Surmeier, D. J. (2000). Kv4.2 mRNA abundance and A-type K+ current amplitude are linearly related in basal ganglia and basal forebrain neurons. The Journal of Neuroscience, 20, 579–588.PubMedGoogle Scholar
  38. Van Geit, W., De Schutter, E., & Achard, P. (2008). Automated neuron model optimization techniques: a review. Biological Cybernetics, 99, 241–251.PubMedCrossRefGoogle Scholar
  39. Vanier, M. C., & Bower, J. M. (1999). A comparative survey of automated parameter-search methods for compartmental neural models. Journal of Computational Neuroscience, 7, 149–171.PubMedCrossRefGoogle Scholar
  40. Weaver, C. M., & Wearne, S. L. (2006). The role of action potential shape and parameter constraints in optimization of compartment models. Neurocomputing, 69, 1053–1057.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Eric B. Hendrickson
    • 1
    • 2
  • Jeremy R. Edgerton
    • 2
  • Dieter Jaeger
    • 2
    Email author
  1. 1.Biomedical Engineering DepartmentGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Biology DepartmentEmory UniversityAtlantaUSA

Personalised recommendations