Advertisement

Journal of Computational Neuroscience

, Volume 31, Issue 2, pp 229–245 | Cite as

Topologically invariant macroscopic statistics in balanced networks of conductance-based integrate-and-fire neurons

  • Pierre Yger
  • Sami El Boustani
  • Alain Destexhe
  • Yves Frégnac
Article

Abstract

The relationship between the dynamics of neural networks and their patterns of connectivity is far from clear, despite its importance for understanding functional properties. Here, we have studied sparsely-connected networks of conductance-based integrate-and-fire (IF) neurons with balanced excitatory and inhibitory connections and with finite axonal propagation speed. We focused on the genesis of states with highly irregular spiking activity and synchronous firing patterns at low rates, called slow Synchronous Irregular (SI) states. In such balanced networks, we examined the “macroscopic” properties of the spiking activity, such as ensemble correlations and mean firing rates, for different intracortical connectivity profiles ranging from randomly connected networks to networks with Gaussian-distributed local connectivity. We systematically computed the distance-dependent correlations at the extracellular (spiking) and intracellular (membrane potential) levels between randomly assigned pairs of neurons. The main finding is that such properties, when they are averaged at a macroscopic scale, are invariant with respect to the different connectivity patterns, provided the excitatory-inhibitory balance is the same. In particular, the same correlation structure holds for different connectivity profiles. In addition, we examined the response of such networks to external input, and found that the correlation landscape can be modulated by the mean level of synchrony imposed by the external drive. This modulation was found again to be independent of the external connectivity profile. We conclude that first and second-order “mean-field” statistics of such networks do not depend on the details of the connectivity at a microscopic scale. This study is an encouraging step toward a mean-field description of topological neuronal networks.

Keywords

Topological networks Mean-field Correlation Synchrony Intracortical connectivity 

Notes

Acknowledgements

We thank Olivier Marre for helpful discussions and Andrew Davison for comments on the manuscript. P.Y. was supported by a MENRT bursary from the University of Paris XI, S.E.B was supported by a FRM fellowship. Research supported by the CNRS, ANR (NATSTATS and HR-CORTEX) and the European Commission (FACETS FP6-2004-IST-FETPI 15879 and Brain-i-Nets FP7-ICT-2007-C 243914).

Supplementary material

10827_2010_310_MOESM1_ESM.pdf (728 kb)
(PDF 727 KB)
10827_2010_310_MOESM2_ESM.tex (5 kb)
(TEX 5.44 KB)

References

  1. Amit, D. J., & Brunel, N. (1997). Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cerebral Cortex, 7(3), 237–252.PubMedCrossRefGoogle Scholar
  2. Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996). Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses. Science, 273(5283), 1868–1871.PubMedCrossRefGoogle Scholar
  3. Benucci, A., Frazor, R. A., & Carandini, M. (2007). Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron, 55(1), 103–117.PubMedCrossRefGoogle Scholar
  4. Berger, D., Warren, D., Normann, R., Arieli, A., & Grün, S. (2007). Spatially organized spike correlation in cat visual cortex. Neurocomputing, 70(10–12), 2112–2116.CrossRefGoogle Scholar
  5. Bienenstock, E. (1996). On the dimensionality of cortical graphs. Journal of Physiology (Paris), 90(3–4), 251–256.CrossRefGoogle Scholar
  6. Braitenberg, V, & Schüz, A. (1998). Cortex: Statistics and geometry of neuronal connectivity. Berlin: Springer.Google Scholar
  7. Bringuier, V., Chavane, F., Glaeser, L., & Frégnac, Y. (1999). Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science, 283(5402), 695–699.PubMedCrossRefGoogle Scholar
  8. Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8(3), 183–208.PubMedCrossRefGoogle Scholar
  9. Cessac, B., & Viéville, T. (2008). On dynamics of integrate-and-fire neural networks with conductance based synapses. Frontiers in Computational Neuroscience, 2, 2. doi: 10.3389/neuro.10.002.2008.PubMedCrossRefGoogle Scholar
  10. Contreras, D. (2007). Propagating waves in visual cortex. Neuron, 55(1), 3–5.PubMedCrossRefGoogle Scholar
  11. Davison, A. P., Bruederle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al. (2009) PyNN: A common interface for neuronal network simulators. Front Neuroinformatics 2, 11. doi: 10.3389/neuro.11.011.2008.Google Scholar
  12. de la Rocha, J., Doiron, B., Shea-Brown, E., Josi, K., & Reyes, A. (2007). Correlation between neural spike trains increases with firing rate. Nature, 448(7155), 802–806.PubMedCrossRefGoogle Scholar
  13. Destexhe, A, & Paré, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81(4), 1531–1547.PubMedGoogle Scholar
  14. Diesmann, M., & Gewaltig, M. (2001). NEST: An environment for neural systems simulations. Forschung und wisschenschaftliches Rechnen, Beitrage zum Heinz-Biling-Preis 58, 43–70.Google Scholar
  15. El Boustani, S., & Destexhe, A. (2009). A master equation formalism for macroscopic modeling of asynchronous irregular activity states. Neural Computation, 21(1), 46–100.PubMedCrossRefGoogle Scholar
  16. El Boustani, S., Marre, O., Béhuret, S., Baudot, P., Yger, P., Bal, T., et al. (2009). Network-state modulation of power-law frequency-scaling in visual cortical neurons. PLoS Computational Biology, 5(9), e1000,519.Google Scholar
  17. Gil, Z., Connors, B. W., & Amitai, Y. (1999). Efficacy of thalamocortical and intracortical synaptic connections: Quanta, innervation, and reliability. Neuron, 23(2), 385–397.PubMedCrossRefGoogle Scholar
  18. Gilbert, C. D., & Wiesel, T. N. (1983). Clustered intrinsic connections in cat visual cortex. Journal of Neuroscience, 3(5), 1116–1133.PubMedGoogle Scholar
  19. Göbel, W., Kampa, B. M., & Helmchen, F. (2007). Imaging cellular network dynamics in three dimensions using fast 3d laser scanning. Nature Methods, 4(1), 73–79.PubMedCrossRefGoogle Scholar
  20. Gonzlez-Burgos, G., Barrionuevo, G., & Lewis, D. A. (2000). Horizontal synaptic connections in monkey prefrontal cortex: An in vitro electrophysiological study. Cerebral Cortex, 10(1), 82–92.CrossRefGoogle Scholar
  21. Greenberg, D. S., Houweling, A. R., & Kerr, J. N. D. (2008). Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nature Neuroscience, 11(7), 749–751.PubMedCrossRefGoogle Scholar
  22. Grinvald, A., Lieke, E. E., Frostig, R. D., & Hildesheim, R. (1994). Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. Journal of Neuroscience, 14(5 Pt 1), 2545–2568.PubMedGoogle Scholar
  23. Han, F., Caporale, N., & Dan, Y. (2008). Reverberation of recent visual experience in spontaneous cortical waves. Neuron, 60(2), 321–327.PubMedCrossRefGoogle Scholar
  24. Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biological Cybernetics, 82(2), 111–121.PubMedCrossRefGoogle Scholar
  25. Izhikevich, E. M., Gally, J. A., & Edelman, G. M. (2004). Spike-timing dynamics of neuronal groups. Cerebral Cortex, 14(8), 933–944.PubMedCrossRefGoogle Scholar
  26. Kitano, K., & Fukai, T. (2007). Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies. Journal of Computational Neuroscience, 23(2), 237–250.PubMedCrossRefGoogle Scholar
  27. Kohn, A., & Smith, M. A. (2005). Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. Journal of Neuroscience, 25(14), 3661–3673.PubMedCrossRefGoogle Scholar
  28. Kriener, B., Tetzlaff, T., Aertsen, A., Diesmann, M., & Rotter, S. (2008). Correlations and population dynamics in cortical networks. Neural Computation, 20(9), 2185–2226.PubMedCrossRefGoogle Scholar
  29. Kriener, B., Helias, M., Aertsen, A., & Rotter, S. (2009). Correlations in spiking neuronal networks with distance dependent connections. Journal of Computational Neuroscience.Google Scholar
  30. Kuhn, A., Aertsen, A., & Rotter, S. (2003). Higher-order statistics of input ensembles and the response of simple model neurons. Neural Computation, 15(1), 67–101.PubMedCrossRefGoogle Scholar
  31. Kumar, A., Schrader, S., Aertsen, A., & Rotter, S. (2008), The high-conductance state of cortical networks. Neural Computation, 20(1), 1–43.PubMedCrossRefGoogle Scholar
  32. Larkum, M. E., Zhu, J. J., & Sakmann, B. (2001). Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. Journal of Physiology, 533(Pt 2), 447–466.PubMedCrossRefGoogle Scholar
  33. Liu, C. Y., & Nykamp, D. Q. (2009). A kinetic theory approach to capturing interneuronal correlation: The feedforward case. Journal of Computational Neuroscience, 26, 339–368.PubMedCrossRefGoogle Scholar
  34. Marre, O., Yger, P., Davison, A., & Frégnac, Y. (2009). Reliable recall of spontaneous activity patterns in cortical networks. Journal of Neuroscience, 29(46), 14596–14606.PubMedCrossRefGoogle Scholar
  35. Mehring, C., Hehl, U., Kubo, M., Diesmann, M., & Aertsen, A. (2003). Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biological Cybernetics, 88(5), 395–408.PubMedCrossRefGoogle Scholar
  36. Mitchell, J. F., Sundberg, K. A., & Reynolds, J. H. (2009). Spatial attention decorrelates intrinsic activity fluctuations in macaque area v4. Neuron, 63(6), 879–888.PubMedCrossRefGoogle Scholar
  37. Nauhaus, I., Busse, L., Carandini, M., & Ringach, D. L. (2009). Stimulus contrast modulates functional connectivity in visual cortex. Nature. Neuroscience, 12(1), 70–76.PubMedCrossRefGoogle Scholar
  38. Nirenberg, S., & Latham, P. E. (2003). Decoding neuronal spike trains: How important are correlations? Proceedings of the National Academy of Sciences of the United States of America, 100(12), 7348–7353.PubMedCrossRefGoogle Scholar
  39. Oswald, A. M. M., & Reyes, A. D. (2008). Maturation of intrinsic and synaptic properties of layer 2/3 pyramidal neurons in mouse auditory cortex. Journal of Neurophysiology, 99(6), 2998–3008.PubMedCrossRefGoogle Scholar
  40. Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., et al. (2010). The asynchronous state in cortical circuits. Science, 327(5965), 587–590.PubMedCrossRefGoogle Scholar
  41. Roxin, A., Brunel, N., & Hansel, D. (2005). Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. Physical Review Letters, 94(23), 238103.PubMedCrossRefGoogle Scholar
  42. Schwarz, C., & Bolz, J. (1991). Functional specificity of a long-range horizontal connection in cat visual cortex: A cross-correlation study. Journal of Neuroscience, 11(10), 2995–3007.PubMedGoogle Scholar
  43. Shea-Brown, E., Josi, K., de la Rocha, J., & Doiron, B. (2008). Correlation and synchrony transfer in integrate-and-fire neurons: Basic properties and consequences for coding. Physical Review Letters, 100(10), 108102.PubMedCrossRefGoogle Scholar
  44. Singer, W., & Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18, 555–586.PubMedCrossRefGoogle Scholar
  45. Smith, M. A., & Kohn, A. (2008). Spatial and temporal scales of neuronal correlation in primary visual cortex. Journal of Neuroscience, 28(48), 12591–12603.PubMedCrossRefGoogle Scholar
  46. Usher, M., Stemmler, M., Koch, C., & Olami, Z. (1994). Network amplification of local fluctuations causes high spike rate variability, fractal firing patterns and oscillatory local field potentials. Neural Computation, 6(5), 795–836.CrossRefGoogle Scholar
  47. van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274(5293), 1724–1726.PubMedCrossRefGoogle Scholar
  48. van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of cortical circuits. Neural Computation, 10(6), 1321–1371.PubMedCrossRefGoogle Scholar
  49. Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25(46), 10786–10795.PubMedCrossRefGoogle Scholar
  50. Voges, N., Aertsen, A., & Rotter, S. (2007). Statistical analysis of spatially embedded networks: From grid to random node positions. Neurocomputing, 70(10–12), 1833–1837.CrossRefGoogle Scholar
  51. Zohary, E., Shadlen, M. N., & Newsome, W. T. (1994). Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 370(6485), 140–143.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Pierre Yger
    • 1
  • Sami El Boustani
    • 1
  • Alain Destexhe
    • 1
  • Yves Frégnac
    • 1
  1. 1.Unité de Neuroscience Information et Complexité (UNIC)UPR 3293 CNRSGif-sur-YvetteFrance

Personalised recommendations