Advertisement

Journal of Computational Neuroscience

, Volume 31, Issue 2, pp 247–271 | Cite as

Reduced order modeling of passive and quasi-active dendrites for nervous system simulation

  • Boyuan YanEmail author
  • Peng Li
Article

Abstract

Accurate neuron models at the level of the single cell are composed of dendrites described by a large number of compartments. The network-level simulation of complex nervous systems requires highly compact yet accurate single neuron models. We present a systematic, numerically efficient and stable model order reduction approach to reduce the complexity of large dendrites by orders of magnitude. The resulting reduced dendrite models match the impedances of the full model within the frequency range of biological signals and reproduce the original action potential output waveforms.

Keywords

Passive dendrites Quasi-active dendrites Reduced modeling Computer simulation 

References

  1. Antoulas, A. C. (2005). Approximation of large-scale dynamical systems. Philadelphia: Society of Industrial and Applied Mathematics (SIAM).CrossRefGoogle Scholar
  2. Bai, Z., & Su, Y. (2005). Dimension reduction of large-scale second-order dynamical systems va a second-order Arnoldi method. SIAM Journal on Scientific Computing, 26(5), 1692–1709.CrossRefGoogle Scholar
  3. Bower, J. M., & Beeman, D. (1998). The book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation System. New York: Springer.Google Scholar
  4. Bush, P. C., & Sejnowski, T. J. (1993). Reduced compartmental models of neocortical pyramidal cells. Journal of Neuroscience Methods, 46, 159–166.PubMedCrossRefGoogle Scholar
  5. Butts, D. A., Weng, C., Jin, J., Yeh, C., Lesica, N. A., Alonso, J., et al. (2007). Temporal precision in the neural code and the timescales of natural vision. Nature, 449, 92–95.PubMedCrossRefGoogle Scholar
  6. Dayan, P., & Abbott, L. (2001), Theoretical neuroscience: Computational and mathematical modeling of neural system. Cambridge: MIT Press.Google Scholar
  7. Djurfeldt, M., Lundqvist, M., Johansson, C., Rehn, M., Ekeberg, Ö., & Lansner, A. (2007). Brain-scale simulation of the neocortex on the IBM blue Gene/L supercomputer. IBM Journal of Research and Development, 52(1/2), 31–40.Google Scholar
  8. Dyhrfjeld-Johnsen, J., Maier, J., Schubert, D., Staiger, J., Luhmann, H. J., Stephan, K. E., et al. (2005). CoCoDat: A database system for organizing and selecting quantitative data on single neurons and neuronal microcircuitry. Journal of Neuroscience Methods, 141, 291–308.PubMedCrossRefGoogle Scholar
  9. Feldmann, P., & Freund, R. W. (1995), Efficient linear circuit analysis by Padė approximation via the Lanczos process. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 14, 639–649.CrossRefGoogle Scholar
  10. Gerstner, W., Kreiter, A. K., Markram, H., & Herz, A. V. M. (1997). Neural codes: Firing rates and beyond. Proceedings of the National Academy of Sciences of the United States of America, 94, 12740–12741.PubMedCrossRefGoogle Scholar
  11. Glover, K. (1984). All optimal Hankel norm approximations of linear multivariable systems and their L  ∞  error bounds. International Journal of Control, 39(6), 1145–1193.CrossRefGoogle Scholar
  12. Grimme, E. J., Sorensen, D. C., & Van Dooren, P. (2005). Model reduction of state space systems via an implicitly restarted Lanczos method. Numerical Algorithms, 12(1), 1–31.CrossRefGoogle Scholar
  13. Gugercin, S., Antoulas, S., & Beattie, C. (2008). H 2 model reduction for large-scale linear dynamical systems. SIAM Journal on Matrix Analysis and Applications, 30, 609–638.CrossRefGoogle Scholar
  14. Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.PubMedGoogle Scholar
  15. Izhikevich, E. M., & Edelman, G. M. (2007). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences of the United States of America, 105, 3593–3598.CrossRefGoogle Scholar
  16. Jack, J. J. B., Noble, D., & Tsien, R. W. (1975). Electric current flow in excitable cells. Oxford: Calderon Press.Google Scholar
  17. Kellems, A. R., Chaturantabut, S., Sorensen, D. C., & Cox, S. J. (2010). Morphologically accurate reduced order modeling of spiking neurons. Journal of Computational Neuroscience, 28, 477–494.PubMedCrossRefGoogle Scholar
  18. Kellems, A. R., Roos, D., Xiao, N., & Cox, S. J. (2009). Low-dimensional, morphologically accurate models of subthreshold membrane potential. Journal of Computational Neuroscience, 27, 161–176.PubMedCrossRefGoogle Scholar
  19. Koch, C. (1999). Biophysics of computation. Oxford: Oxford University Press.Google Scholar
  20. Markram, H. (2006). The blue brain project. Nature Reviews. Neuroscience, 7, 153–160.PubMedCrossRefGoogle Scholar
  21. Moore, B. C. (1981). Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control, 26, 17–31.CrossRefGoogle Scholar
  22. Odabasioglu, A. (1998). Prima: Passive reduced-order interconnect macromodeling algorithm. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 17, 645–654.CrossRefGoogle Scholar
  23. Pillage, L. T., & Rohrer, R. A. (1990). Asymptic waveform evaluation for timing analysis. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 9, 352–366.CrossRefGoogle Scholar
  24. Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity. Experimental Neurology, 1, 491–527.PubMedCrossRefGoogle Scholar
  25. Rall, W. (1964). Theoretical significance of dendrite trees for neuronal input-output relations. In R. Reiss (Ed.), Neuronal theory and modeling (pp. 73–97). Stanford: Stanford University Press.Google Scholar
  26. Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for different soma-dendritic distribution of synaptic inputs. Journal of Neurophysiology, 30, 1138–1168.PubMedGoogle Scholar
  27. Rapp, Y., Koch, C., & Segev, I. (1992). The impact of parallel fiber background activity on the cable properties of cerebellar purkinje cells. Neural Computation, 4, 518–532.CrossRefGoogle Scholar
  28. Roberts, C. B., Best, J. A., & Suter, K. J. (2010). Dendritic processing of excitatory synaptic input in hypothalamic gonadotropin releasing-hormone neurons. Endocrinology, 147, 1545–1555.CrossRefGoogle Scholar
  29. Saad, Y. (2003). Iterative methods for sparse linear systems. Philadelphia: Society of Industrial and Applied Mathematic (SIAM).CrossRefGoogle Scholar
  30. Salimbahrami, B., & Lohmann, B. (2002). Krylov subspace methods in linear model order reduction: Introduction and invariance properties. Scientific Report, Institute of Automation, University of Bremen.Google Scholar
  31. Segev, I. (1992). Single neurone models: Oversimple, complex and reduced. TINS 15, 414–421.PubMedGoogle Scholar
  32. Single, S., & Borst, A. (1998). Dendritic integration and its role in computing image velocity. Science, 281, 1848–1850.PubMedCrossRefGoogle Scholar
  33. Spruston, N. (2008). Pyramidal neurons: Dendritic structure and synaptic integration. Nature Reviews. Neuroscience, 9, 206–221.PubMedCrossRefGoogle Scholar
  34. Stein, R., Gossen, E., & Jones, K. (2005). Neuronal variability: noise or part of the signal? Nature Reviews. Neuroscience, 6, 389–397.PubMedCrossRefGoogle Scholar
  35. Stewart, G. W. (2001), Matrix algorithms: Eigensystems. Philadelphia: Society of Industrial and Applied Mathematic (SIAM).CrossRefGoogle Scholar
  36. Villemagne, C. D., & Skelton, R. E. (1987). Model reduction using a projection formulation. International Journal of Control, 46, 2141–2169.CrossRefGoogle Scholar
  37. Wilson, M. A., & Bower, J. M. (1989). The simulation of large scale neural networks. In C. Koch, & I. Segev (Eds.), Methods in neuronal modeling (pp. 291–333). Stanford: MIT Press.Google Scholar
  38. Yan, B., Zhou, L., Tan, S., Chen, J., & McGaughy, B. (2008). DeMOR: Decentralized model order reduction of linear networks with massive ports. In Proc. Design Automation Conf. (DAC) (pp. 409–414).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations