Journal of Computational Neuroscience

, Volume 31, Issue 1, pp 137–158 | Cite as

A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells

  • John L. Baker
  • Tamara Perez-Rosello
  • Michele Migliore
  • Germán Barrionuevo
  • Giorgio A. AscoliEmail author


Despite the central position of CA3 pyramidal cells in the hippocampal circuit, the experimental investigation of their synaptic properties has been limited. Recent slice experiments from adult rats characterized AMPA and NMDA receptor unitary synaptic responses in CA3b pyramidal cells. Here, excitatory synaptic activation is modeled to infer biophysical parameters, aid analysis interpretation, explore mechanisms, and formulate predictions by contrasting simulated somatic recordings with experimental data. Reconstructed CA3b pyramidal cells from the public repository NeuroMorpho.Org were used to allow for cell-specific morphological variation. For each cell, synaptic responses were simulated for perforant pathway and associational/commissural synapses. Means and variability for peak amplitude, time-to-peak, and half-height width in these responses were compared with equivalent statistics from experimental recordings. Synaptic responses mediated by AMPA receptors are best fit with properties typical of previously characterized glutamatergic receptors where perforant path synapses have conductances twice that of associational/commissural synapses (0.9 vs. 0.5 nS) and more rapid peak times (1.0 vs. 3.3 ms). Reanalysis of passive-cell experimental traces using the model shows no evidence of a CA1-like increase of associational/commissural AMPA receptor conductance with increasing distance from the soma. Synaptic responses mediated by NMDA receptors are best fit with rapid kinetics, suggestive of NR2A subunits as expected in mature animals. Predictions were made for passive-cell current clamp recordings, combined AMPA and NMDA receptor responses, and local dendritic depolarization in response to unitary stimulations. Models of synaptic responses in active cells suggest altered axial resistivity and the presence of synaptically activated potassium channels in spines.


AMPA receptor NMDA receptor Hippocampus 



This work was supported by National Institutes of Health grants AG025633 and NS39600.


  1. Amaral, D. G., Ishizuka, N., & Claiborne, B. (1990). Neurons, numbers and the hippocampal network. Progress in Brain Research, 83, 1–11.PubMedCrossRefGoogle Scholar
  2. Amaral, D. G., & Witter, M. P. (1989). The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience, 31, 571–591.PubMedCrossRefGoogle Scholar
  3. Andrásfalvy, B. K., & Magee, J. C. (2001). Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. The Journal of Neuroscience, 21, 9151–9159.PubMedGoogle Scholar
  4. Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho.Org: a central resource for neuronal morphologies. Journal of Neuroscience, 27, 9247–9251.PubMedCrossRefGoogle Scholar
  5. Baker, J. L., & Olds, J. L. (2007). Theta phase precession emerges from a hybrid computational model of a CA3 place cell. Cognitive Neurodynamics, 1, 237–248.PubMedCrossRefGoogle Scholar
  6. Bekkers, J. M., & Stevens, C. F. (1996). Cable properties of cultured hippocampal neurons determined from sucrose-evoked miniature EPSCs. Journal of Neurophysiology, 75, 1250–1255.PubMedGoogle Scholar
  7. Berzhanskaya, J., Urban, N. N., & Barrionuevo, G. (1998). Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3. Journal of Neurophysiology, 79, 2111–2118.PubMedGoogle Scholar
  8. Bloodgood, B. L., & Sabatini, B. L. (2007). Nonlinear regulation of unitary synaptic signals by CaV2.3 voltage-sensitive calcium channels located in dendritic spines. Neuron, 53, 249–260.PubMedCrossRefGoogle Scholar
  9. Cais, O., Sedlacek, M., Horak, M., Dittert, I., & Vyklicky, L., Jr. (2008). Temperature dependence of NR1/NR2B NMDA receptor channels. Neuroscience, 151, 428–438.PubMedCrossRefGoogle Scholar
  10. Carnevale, N. T., & Hines, M. L. (2005). The NEURON book. New York: Cambridge University Press.Google Scholar
  11. Chen, N., Ren, J., Raymond, L. A., & Murphy, T. H. (2001). Changes in agonist concentration dependence that are a function of duration of exposure suggest N-methyl-d-aspartate receptor nonsaturation during synaptic stimulation. Molecular Pharmacology, 59, 212–219.PubMedGoogle Scholar
  12. Colquhoun, D., Jonas, P., & Sakmann, B. (1992). Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. Journal de Physiologie, 458, 261–287.Google Scholar
  13. Cull-Candy, S., Brickley, S., & Farrant, M. (2001). NMDA receptor subunits: diversity, development and disease. Current Opinion in Neurobiology, 11, 327–335.PubMedCrossRefGoogle Scholar
  14. Dalby, N. O., & Mody, I. (2003). Activation of NMDA receptors in rat dentate gyrus granule cells by spontaneous and evoked transmitter release. Journal of Neurophysiology, 90, 786–797.PubMedCrossRefGoogle Scholar
  15. Dayan, P., & Abbott, L. (2001). Theoretical neuroscience. Cambridge: MIT.Google Scholar
  16. Debanne, D., Guérineau, N. C., Gähwiler, B. H., & Thompson, S. M. (1995). Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures. Journal of Neurophysiology, 73, 1282–1294.PubMedGoogle Scholar
  17. Debanne, D., Gähwiler, B. H., & Thompson, S. M. (1998). Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. Journal de Physiologie, 507, 237–247.CrossRefGoogle Scholar
  18. Debanne, D., Gähwiler, B. H., & Thompson, S. M. (1999). Heterogeneity of synaptic plasticity at unitary CA3-CA1 and CA3-CA3 connections in rat hippocampal slice cultures. The Journal of Neuroscience, 19, 10664–10671.PubMedGoogle Scholar
  19. Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks (2nd ed., pp. 1–15). Cambridge: MIT.Google Scholar
  20. Diamond, J. S. (2001). Neuronal glutamate transporters limit activation of NMDA receptors by neurotransmitter spillover on CA1 pyramidal cells. The Journal of Neuroscience, 21, 8328–8338.PubMedGoogle Scholar
  21. Do, V. H., Martinez, C. O., Martinez, J. L., Jr., & Derrick, B. E. (2002). Long-term potentiation in direct perforant path projections to the hippocampal CA3 region in vivo. Journal of Neurophysiology, 87, 669–678.PubMedGoogle Scholar
  22. Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. A., & Traynelis, S. F. (2005). Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. Journal de Physiologie, 563, 345–358.CrossRefGoogle Scholar
  23. Feldmeyer, D., Lübke, J., Silver, R. A., & Sakmann, B. (2002). Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. Journal de Physiologie, 538, 803–822.CrossRefGoogle Scholar
  24. Geiger, J. R., Lübke, J., Roth, A., Frotscher, M., & Jonas, P. (1997). Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron, 18, 1009–1023.PubMedCrossRefGoogle Scholar
  25. Gentet, L. J., Stuart, G. J., & Clements, J. D. (2000). Direct measurement of specific membrane capacitance in neurons. Biophysical Journal, 79, 314–320.PubMedCrossRefGoogle Scholar
  26. Golding, N. L., Mickus, T. J., Katz, Y., Kath, W. L., & Spruston, N. (2005). Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. Journal de Physiologie, 568, 69–82.CrossRefGoogle Scholar
  27. Hemond, P., Epstein, D., Boley, A., Migliore, M., Ascoli, G. A., & Jaffe, D. B. (2008). Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus, 18, 411–424.PubMedCrossRefGoogle Scholar
  28. Hemond, P., Migliore, M., Ascoli, G. A., & Jaffe, D. B. (2009). The membrane response of CA3b pyramidal neurons near rest: heterogeneity of passive properties and the contribution of hyperpolarization-activated currents. Neuroscience, 160, 359–370.PubMedCrossRefGoogle Scholar
  29. Henze, D., Cameron, W. E., & Barrionuevo, G. (1996). Dendritic morphology and its effects on the amplitude and rise-time of synaptic signals in hippocampal CA3 pyramidal cells. The Journal of Comparative Neurology, 369, 331–344.PubMedCrossRefGoogle Scholar
  30. Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., & Shepherd, G. M. (2004). ModelDB: a database to support computational neuroscience. Journal of Computational Neuroscience, 17, 7–11.PubMedCrossRefGoogle Scholar
  31. Hjorth-Simonsen, A. (1973). Some intrinsic connections of the hippocampus in the rat: an experimental analysis. The Journal of Comparative Neurology, 147, 145–161.PubMedCrossRefGoogle Scholar
  32. Holmes, W. R., Ambros-Ingerson, J., & Grover, L. M. (2006). Fitting experimental data to models that use morphological data from public databases. Journal of Computational Neuroscience, 20, 349–365.PubMedCrossRefGoogle Scholar
  33. Iansek, R., & Redman, S. J. (1973). The amplitude, time course, and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. Journal de Physiologie, 234, 665–688.Google Scholar
  34. Ishizuka, N., Cowan, W. M., & Amaral, D. G. (1995). A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. The Journal of Comparative Neurology, 362, 17–45.PubMedCrossRefGoogle Scholar
  35. Jaffe, D. B., & Carnevale, N. T. (1999). Passive normalization of synaptic integration influenced by dendritic architecture. Journal of Neurophysiology, 82, 3268–3285.PubMedGoogle Scholar
  36. Jahr, C. E., & Stevens, C. F. (1990). Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. The Journal of Neuroscience, 10, 3178–3182.PubMedGoogle Scholar
  37. Jonas, P., & Sakmann, B. (1992). Glutamate receptor channels in isolated patches from CA1 and CA3 pyramidal cells of rat hippocampal slices. Journal de Physiologie, 455, 143–171.Google Scholar
  38. Jonas, P., Major, G., & Sakmann, B. (1993). Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. Journal de Physiologie, 472, 615–663.Google Scholar
  39. Káli, S., & Dayan, P. (2000). The involvement of recurrent connections in area CA3 in establishing the properties of place fields: a model. The Journal of Neuroscience, 20, 7463–7477.PubMedGoogle Scholar
  40. Khazipov, R., Ragozzino, D., & Bregestovski, P. (1995). Kinetics and Mg2+ block of N-methyl-d-aspartate receptor channels during postnatal development of hippocampal CA3 pyramidal neurons. Neuroscience, 69, 1057–1065.PubMedCrossRefGoogle Scholar
  41. Lazarewicz, M. T., Migliore, M., & Ascoli, G. A. (2002). A new bursting model of CA3 pyramidal cell physiology suggests multiple locations for spike initiation. Biosystems, 67, 129–137.PubMedCrossRefGoogle Scholar
  42. Magee, J. C., & Cook, E. P. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neuroscience, 3, 895–903.PubMedCrossRefGoogle Scholar
  43. Major, G., Larkman, A. U., Jonas, P., Sakmann, B., & Jack, J. J. B. (1994). Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. The Journal of Neuroscience, 14, 4613–4638.PubMedGoogle Scholar
  44. Marr, D. (1971). Simple memory: a theory for archicortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 262, 23–81.PubMedCrossRefGoogle Scholar
  45. Matsuda, S., Kobayashi, Y., & Ishizuka, N. (2004). A quantitative analysis of the laminar distribution of synaptic boutons in field CA3 of the rat hippocampus. Neuroscience Research, 49, 241–252.PubMedCrossRefGoogle Scholar
  46. McMahon, D. B., & Barrionuevo, G. (2002). Short- and long-term plasticity of the perforant path synapse in hippocampal area CA3. Journal of Neurophysiology, 88, 528–533.PubMedGoogle Scholar
  47. Megías, M., Emri, Z., Freund, T. F., & Gulyás, A. I. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience, 102, 527–540.PubMedCrossRefGoogle Scholar
  48. Migliore, M., Hoffman, D. A., Magee, J. C., & Johnston, D. (1999). Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of Computational Neuroscience, 7, 5–15.PubMedCrossRefGoogle Scholar
  49. Miles, R., & Wong, R. K. S. (1986). Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. Journal de Physiologie, 373, 397–418.Google Scholar
  50. Miller, R. G., Jr. (1998). Beyond ANOVA: Basics of applied statistics. New York: Chapman & Hall/CRC.Google Scholar
  51. Nicholson, D., Katz, Y., Trana, R., Kath, W. L., Spruston, N., & Geinisman, Y. (2006). Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron, 50, 431–442.PubMedCrossRefGoogle Scholar
  52. Palmer, L. M., & Stuart, G. J. (2009). Membrane potential changes in dendritic spines during action potentials and synaptic inputs. The Journal of Neuroscience, 29, 6897–6903.PubMedCrossRefGoogle Scholar
  53. Perez-Rosello, T., Baker, J. L., Ferrante, M., Iyengar, S., Ascoli, G. A., Barrionuevo, G. (2010). Passive and active shaping of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. Journal of Computational Neuroscience (in press).Google Scholar
  54. R Development Core Team (2009). R: A language and environment for statistical computing [Online]. R Foundation for Statistical Computing. Accessed October 19, 2009.
  55. Rall, W., Burke, R. E., Smith, T. G., Nelson, P. G., & Frank, K. (1967). Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. Journal of Neurophysiology, 30, 1169–1193.PubMedGoogle Scholar
  56. Ramón y Cajal, S. (1995). Histology of the nervous system of man and vertebrates. Translation from the French edition by Swanson N, Swanson LW. New York: Oxford University Press.Google Scholar
  57. Rolls, E. T. (1996). A theory of hippocampal function in memory. Hippocampus, 6, 601–620.PubMedCrossRefGoogle Scholar
  58. Roth, A., & Häusser, M. (2001). Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. Journal de Physiologie, 535, 445–472.CrossRefGoogle Scholar
  59. Samsonovich, A., & McNaughton, B. L. (1997). Path integration and cognitive mapping in a continuous attractor neural network model. The Journal of Neuroscience, 17, 5900–5920.PubMedGoogle Scholar
  60. Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery and Psychiatry, 20, 11–21.CrossRefGoogle Scholar
  61. Smith, M. A., Ellis-Davies, G. C. R., & Magee, J. C. (2003). Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. Journal de Physiologie, 548, 245–258.CrossRefGoogle Scholar
  62. Spruston, N., & Johnston, D. (1992). Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. Journal of Neurophysiology, 67, 508–529.PubMedGoogle Scholar
  63. Spruston, N., Jonas, P., & Sakmann, B. (1995). Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. Journal de Physiologie, 482, 325–352.Google Scholar
  64. Svoboda, K., Tank, D. W., & Denk, W. (1996). Direct measurement of coupling between dendritic spines and shafts. Science, 272, 716–719.PubMedCrossRefGoogle Scholar
  65. Swanson, L. W., Wyss, J. M., & Cowan, W. M. (1978). An autoradiographic study of the organization of intrahippocampal association pathways in the rat. The Journal of Comparative Neurology, 181, 681–715.PubMedCrossRefGoogle Scholar
  66. Turner, D. A., Li, X. G., Pyapali, G. K., Ylinen, A., & Buzsáki, G. (1995). Morphometric and electrical properties of reconstructed hippocampal CA3 neurons recorded in vivo. The Journal of Comparative Neurology, 356, 580–594.PubMedCrossRefGoogle Scholar
  67. Vicini, S., Wang, J. F., Li, J. H., Zhu, W. J., Wang, Y. H., Luo, J. H., et al. (1998). Functional and pharmacological differences between recombinant N-methyl-d-aspartate receptors. Journal of Neurophysiology, 79, 555–566.PubMedGoogle Scholar
  68. Wallenstein, G. V., & Hasselmo, M. E. (1997). GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. Journal of Neurophysiology, 78, 393–408.PubMedGoogle Scholar
  69. Williams, S. H., & Johnston, D. (1991). Kinetic properties of two anatomically distinct excitatory synapses in hippocampal CA3 pyramidal neurons. Journal of Neurophysiology, 66, 1010–1020.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • John L. Baker
    • 1
  • Tamara Perez-Rosello
    • 2
    • 4
  • Michele Migliore
    • 1
    • 3
  • Germán Barrionuevo
    • 2
  • Giorgio A. Ascoli
    • 1
    Email author
  1. 1.Center for Neural Informatics, Structures, & PlasticityGeorge Mason UniversityFairfaxUSA
  2. 2.Department of NeuroscienceUniversity of PittsburghPittsburghUSA
  3. 3.Institute of BiophysicsNational Research CouncilPalermoItaly
  4. 4.Department of OtolaryngologyUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations