Journal of Computational Neuroscience

, Volume 30, Issue 1, pp 85–107 | Cite as

Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity

  • Joseph T. Lizier
  • Jakob Heinzle
  • Annette Horstmann
  • John-Dylan Haynes
  • Mikhail Prokopenko
Article

Abstract

The human brain undertakes highly sophisticated information processing facilitated by the interaction between its sub-regions. We present a novel method for interregional connectivity analysis, using multivariate extensions to the mutual information and transfer entropy. The method allows us to identify the underlying directed information structure between brain regions, and how that structure changes according to behavioral conditions. This method is distinguished in using asymmetric, multivariate, information-theoretical analysis, which captures not only directional and non-linear relationships, but also collective interactions. Importantly, the method is able to estimate multivariate information measures with only relatively little data. We demonstrate the method to analyze functional magnetic resonance imaging time series to establish the directed information structure between brain regions involved in a visuo-motor tracking task. Importantly, this results in a tiered structure, with known movement planning regions driving visual and motor control regions. Also, we examine the changes in this structure as the difficulty of the tracking task is increased. We find that task difficulty modulates the coupling strength between regions of a cortical network involved in movement planning and between motor cortex and the cerebellum which is involved in the fine-tuning of motor control. It is likely these methods will find utility in identifying interregional structure (and experimentally induced changes in this structure) in other cognitive tasks and data modalities.

Keywords

fMRI Visual cortex Motor cortex Movement planning Information transfer Transfer entropy Information structure Neural computation 

References

  1. Bassett, D. S., & Bullmore, E. T. (2009). Human brain networks in health and disease. Current Opinion in Neurology, 22(4), 340–347.CrossRefPubMedGoogle Scholar
  2. Bettencourt, L. M. A., Stephens, G. J., Ham, M. I., & Gross, G. W. (2007). Functional structure of cortical neuronal networks grown in vitro. Physical Review E, 75(2), 021915.CrossRefGoogle Scholar
  3. Bode, S., & Haynes, J. D. (2009). Decoding sequential stages of task preparation in the human brain. NeuroImage, 45(2), 606–613.CrossRefPubMedGoogle Scholar
  4. Bressler, S. L., Tang, W., Sylvester, C. M., Shulman, G. L., & Corbetta, M. (2008). Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. Journal of Neuroscience, 28(40), 10056–10061.CrossRefPubMedGoogle Scholar
  5. Büchel, C., & Friston, K. J. (1997). Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cerebral Cortex, 7(8), 768–778.CrossRefPubMedGoogle Scholar
  6. Bullier, J. (2001). Integrated model of visual processing. Brain Research Reviews, 36, 96–107.CrossRefPubMedGoogle Scholar
  7. Chai, B., Walther, D. B., Beck, D. M., & Fei-Fei, L. (2009). Exploring functional connectivity of the human brain using multivariate information analysis. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems (Vol. 22, pp. 270–278). NIPS Foundation.Google Scholar
  8. Chávez, M., Martinerie, J., & Le Van Quyen, M. (2003). Statistical assessment of nonlinear causality: Application to epileptic EEG signals. Journal of Neuroscience Methods, 124(2), 113–128.CrossRefPubMedGoogle Scholar
  9. Frenzel, S., & Pompe, B. (2007). Partial mutual information for coupling analysis of multivariate time series. Physical Review Letters, 99(20), 204101.CrossRefPubMedGoogle Scholar
  10. Friston, K. (2002). Beyond phrenology: What can neuroimaging tell us about distributed circuitry? Annual Review of Neuroscience, 25, 221–250.CrossRefPubMedGoogle Scholar
  11. Friston, K., Ashburner, J., Kiebel, S., Nichols, T., & Penny, W. (2006). Statistical parametric mapping: The analysis of functional brain images. Elsevier, London.Google Scholar
  12. Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2, 56–78.CrossRefGoogle Scholar
  13. Friston, K. J., & Büchel, C. (2000). Attentional modulation of effective connectivity from V2 to V5/MT in humans. Proceedings of the National Academy of Sciences of the USA, 97(13), 7591–7596.CrossRefPubMedGoogle Scholar
  14. Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19(4), 1273–1302.CrossRefPubMedGoogle Scholar
  15. Gong, P., & van Leeuwen, C. (2009). Distributed dynamical computation in neural circuits with propagating coherent activity patterns. PLoS Computational Biology, 5(12), e1000611.CrossRefGoogle Scholar
  16. Grosse-Wentrup, M. (2008). Understanding brain connectivity patterns during motor imagery for brain-computer interfacing. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems (Vol. 21, pp. 561–568). Curran Associates, Inc.Google Scholar
  17. Handwerker, D. A., Ollinger, J. M., & D’Esposito, M. (2004). Variation of bold hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage, 21(4), 1639–1651.CrossRefPubMedGoogle Scholar
  18. Haynes, J. D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7(7), 523–534.CrossRefPubMedGoogle Scholar
  19. Haynes, J. D., Tregellas, J., & Rees, G. (2005). Attentional integration between anatomically distinct stimulus representations in early visual cortex. Proceedings of the National Academy of Sciences of the USA, 102(41), 14925–14930.CrossRefPubMedGoogle Scholar
  20. Hinrichs, H., Heinze, H. J., & Schoenfeld, M. A. (2006). Causal visual interactions as revealed by an information theoretic measure and fMRI. NeuroImage, 31(3), 1051–1060.CrossRefPubMedGoogle Scholar
  21. Honey, C. J., Kotter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences, 104(24), 10240–10245.CrossRefGoogle Scholar
  22. Horstmann, A. (2008). Sensorimotor integration in human eye-hand coordination: Neuronal correlates and characteristics of the system. Ph.D. thesis, Ruhr-Universität Bochum.Google Scholar
  23. Johansen-Berg, H., Behrens, T. E., Robson, M. D., Drobnjak, I., Rushworth, M. F., Brady, J. M., et al. (2004). Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proceedings of the National Academy of Sciences of the USA, 101(36), 13335–13340.CrossRefPubMedGoogle Scholar
  24. Kantz, H., & Schreiber, T. (1997). Nonlinear time series analysis. Cambridge: Cambridge University Press.Google Scholar
  25. Kraskov, A. (2004). Synchronization and interdependence measures and their applications to the electroencephalogram of epilepsy patients and clustering of data. In Publication series of the John von Neumann Institute for computing (Vol. 24). Ph.D. thesis, John von Neumann Institute for Computing, Jülich, Germany.Google Scholar
  26. Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information. Physical Review E, 69(6), 066138.CrossRefGoogle Scholar
  27. Liang, H., Ding, M., & Bressler, S. L. (2001). Temporal dynamics of information flow in the cerebral cortex. Neurocomputing, 38–40, 1429–1435.CrossRefGoogle Scholar
  28. Lizier, J. T., & Prokopenko, M. (2010). Differentiating information transfer and causal effect. European Physical Journal B, 73(4), 605–615.CrossRefGoogle Scholar
  29. Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2008). Local information transfer as a spatiotemporal filter for complex systems. Physical Review E, 77(2), 026110.CrossRefGoogle Scholar
  30. Logothetis, N., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150–157.CrossRefPubMedGoogle Scholar
  31. Lunenburger, L., Kleiser, R., Stuphorn, V., Miller, L. E., & Hoffmann, K. P. (2001). A possible role of the superior colliculus in eye-hand coordination. Progress in Brain Research, 134, 109–125. 0079-6123 (Print) 0079-6123 (Linking) Journal Article Research Support, Non-U.S. Gov’t Review.Google Scholar
  32. Lungarella, M., Pegors, T., Bulwinkle, D., & Sporns, O. (2005). Methods for quantifying the informational structure of sensory and motor data. Neuroinformatics, 3(3), 243–262.CrossRefPubMedGoogle Scholar
  33. MacKay, D. J. (2003). Information theory, inference, and learning algorithms. Cambridge: Cambridge University Press.Google Scholar
  34. Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424–430.CrossRefPubMedGoogle Scholar
  35. Penhune, V. B., & Doyon, J. (2005). Cerebellum and m1 interaction during early learning of timed motor sequences. Neuroimage, 26(3), 801–812.CrossRefPubMedGoogle Scholar
  36. Ramsey, J., Hanson, S., Hanson, C., Halchenko, Y., Poldrack, R., & Glymour, C. (2010). Six problems for causal inference from fMRI. NeuroImage, 49(2), 1545–1558.CrossRefPubMedGoogle Scholar
  37. Rubinov, M., Knock, S. A., Stam, C. J., Micheloyannis, S., Harris, A. W. F., Williams, L. M., et al. (2009). Small-world properties of nonlinear brain activity in schizophrenia. Human Brain Mapping, 30, 403–416.CrossRefPubMedGoogle Scholar
  38. Saito, Y., & Harashima, H. (1981). Tracking of information within multichannel EEG record - causal analysis in EEG. In N. Yamaguchi & K. Fujisawa (Eds.), Recent advances in EEG and EMG data processing (pp. 133–146). Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
  39. Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85(2), 461–464.CrossRefPubMedGoogle Scholar
  40. Soon, C. S., Brass, M., Heinze, H. J., & Haynes, J. D. (2008). Unconscious determinants of free decisions in the human brain. Nature Neuroscience, 11(5), 543–545.CrossRefPubMedGoogle Scholar
  41. Tanaka, Y., Fujimura, N., Tsuji, T., Maruishi, M., Muranaka, H., & Kasai, T. (2009). Functional interactions between the cerebellum and the premotor cortex for error correction during the slow rate force production task: An fmri study. Experimental Brain Research, 193(1), 143–150.CrossRefGoogle Scholar
  42. Tung, T. Q., Ryu, T., Lee, K. H., & Lee, D. (2007). Inferring gene regulatory networks from microarray time series data using transfer entropy. In P. Kokol, V. Podgorelec, D. Mičetič-Turk, M. Zorman, & M. Verlič (Eds.), Proceedings of the twentieth IEEE international symposium on computer-based medical systems (CBMS ’07), Maribor, Slovenia (pp. 383–388). Los Alamitos: IEEE.CrossRefGoogle Scholar
  43. Verdes, P. F. (2005). Assessing causality from multivariate time series. Physical Review E, 72(2), 026222–026229.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Joseph T. Lizier
    • 1
    • 2
  • Jakob Heinzle
    • 3
  • Annette Horstmann
    • 4
  • John-Dylan Haynes
    • 3
    • 4
    • 5
  • Mikhail Prokopenko
    • 2
    • 6
  1. 1.School of Information TechnologiesThe University of SydneySydneyAustralia
  2. 2.CSIROInformation and Communications Technology CentreEppingAustralia
  3. 3.Bernstein Center for Computational NeuroscienceCharité-Universitätsmedizin BerlinBerlinGermany
  4. 4.Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
  5. 5.Graduate School of Mind and BrainHumboldt Universität zu BerlinBerlinGermany
  6. 6.Max Planck Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations