Journal of Computational Neuroscience

, Volume 30, Issue 2, pp 455–469 | Cite as

Effects of heterogeneity in synaptic conductance between weakly coupled identical neurons

  • Patrick J. Bradley
  • Kurt Wiesenfeld
  • Robert J. Butera


A significant degree of heterogeneity in synaptic conductance is present in neuron to neuron connections. We study the dynamics of weakly coupled pairs of neurons with heterogeneities in synaptic conductance using Wang–Buzsaki and Hodgkin–Huxley model neurons which have Types I and II excitability, respectively. This type of heterogeneity breaks a symmetry in the bifurcation diagrams of equilibrium phase difference versus the synaptic rate constant when compared to the identical case. For weakly coupled neurons coupled with identical values of synaptic conductance a phase locked solution exists for all values of the synaptic rate constant, α. In particular, in-phase and anti-phase solutions are guaranteed to exist for all α. Heterogeneity in synaptic conductance results in regions where no phase locked solution exists and the general loss of the ubiquitous in-phase and anti-phase solutions of the identically coupled case. We explain these results through examination of interaction functions using the weak coupling approximation and an in-depth analysis of the underlying multiple cusp bifurcation structure of the systems of coupled neurons.


Synchrony Weak coupling Heterogeneity 



This work was supported by grants from the National Institutes of Health (R01-H088886, PI: Butera; and R01-NS054281, PI: Canavier, subcontract to R. Butera).


  1. Bose, A., Kopell, N., & Terman, D. (2000). Almost-synchronous solutions for mutually coupled excitatory neurons. Physica D, 140, 69–94.CrossRefGoogle Scholar
  2. Bou-Flores, C., & Berger, A. J. (2001). Gap junctions and inhibitory synapses modulate inspiratory motoneuron synchronization. Journal of Neurophysiology, 85, 1543–1551.PubMedGoogle Scholar
  3. Crawford, J. D. (1991). Introduction to bifurcation theory. Reviews of Modern Physics, 63(4), 991–1037.CrossRefGoogle Scholar
  4. Ermentrout, G. B. (2002). Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. SIAM.Google Scholar
  5. Ermentrout, G. B., & Kopell, N. (1990). Oscillator death in systems of coupled neural oscillators. SIAM Journal on Applied Mathematics, 50(1), 125–146.CrossRefGoogle Scholar
  6. Hansel, D., & Mato, G. (1993). Patterns of synchrony in a heterogeneous Hodgkin–Huxley neural network with weak coupling. Physica A, 200, 662–669.CrossRefGoogle Scholar
  7. Hansel, D., Mato, G., & Meunier, C. (1993). Phase dynamics for weakly coupled Hodgkin–Huxley neurons. Europhysics Letters, 23, 367–372.CrossRefGoogle Scholar
  8. Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Computation, 7(2), 307–337.PubMedCrossRefGoogle Scholar
  9. Izhikevich, E. (1998). Multiple cusp bifurcations. Neural Networks, 11, 495–508.PubMedCrossRefGoogle Scholar
  10. Izhikevich, E. (2007). Dynamical systems in neuroscience. MIT Press.Google Scholar
  11. Izhikevich, E., & Hoppensteadt, F. (1997). Weakly connected neural networks. New York: Springer.Google Scholar
  12. Kuramoto, Y. (1984). Checmical oscillations, waves and turbulence. New York: Springer.Google Scholar
  13. Li, Y., Wang, Y., & Miura, R. (2003). Clustering in small networks of excitatory neurons with heterogeneous coupling strengths. Journal of Computational Neuroscience, 14(2), 139–159.PubMedCrossRefGoogle Scholar
  14. Mellen, N., Janczewski, W., Bocchiaro, C., & Feldman, J. L. (2003). Opiod induced quantal slowing reveals dual networks for repiratory rhythm generation. Neuron, 37, 821–826.PubMedCrossRefGoogle Scholar
  15. Prescott, S., Koninck, Y., & Sejnowski, T. (2008). Biophysical basis for three distinct mechanisms for action potential initiation. PLoS Biology, 4(10), e1000198.CrossRefGoogle Scholar
  16. Preyer, A., & Butera, R. J. (2005). Neuronal oscillators in Aplysia californica that demonstrate weak coupling in vitro. Physical Review Letters, 95, 138103.PubMedCrossRefGoogle Scholar
  17. Purvis, L. K., Smith, J. C., Koizumi, H., & Butera, R. J. (2007). Bursters increase the robustness of rhythm generation in an excitatory network. Journal of Neurophysiology, 97, 1515–1526.PubMedCrossRefGoogle Scholar
  18. Rinzel, J., & Ermentrout, G. B. (1989). Methods in neuronal modeling (pp. 135–169). MIT Press.Google Scholar
  19. Sieling, F., Canavier, C., & Prinz, A. (2009). Predictions of phase-locking in excitatory hybrid networks: Excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition. Journal of Neurophysiology, 102, 69–84.PubMedCrossRefGoogle Scholar
  20. Smith, J. C., Ellenberger, H. H., Ballanyi, K., Richter, D. W., & Feldman, J. L. (1991). Pre-Bötzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science, 254, 726–729.PubMedCrossRefGoogle Scholar
  21. Song, S., Sjöström, P. J., Reigl, M., Nelson, S., & Chklovskii, D. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology, 3(3), e68.CrossRefGoogle Scholar
  22. Terman, D., Kopell, N., & Bose, A. (1998). Dynamics of two mutually coupled slow inhibitory neurons. Physica D, 117, 241–275.CrossRefGoogle Scholar
  23. Van Vreeswijk, C., Abbott, L., & Ermentrout, G. B. (1994). When inhibition not excitation synchronizes neural firing. Journal of Computational Neuroscience, 1, 313–321.PubMedCrossRefGoogle Scholar
  24. White, J., Chow, C., Ritt, J., Soto-Tervino, C., & Kopell, N. (1998). Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. Journal of Computational Neuroscience, 5, 5–16.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Patrick J. Bradley
    • 1
    • 2
  • Kurt Wiesenfeld
    • 2
  • Robert J. Butera
    • 1
    • 3
  1. 1.Laboratory for NeuroengineeringGeorgia Institute, of TechnologyAtlantaUSA
  2. 2.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  3. 3.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations