Journal of Computational Neuroscience

, Volume 30, Issue 2, pp 409–426 | Cite as

Sharpening of directional selectivity from neural output of rabbit retina

Article

Abstract

The estimation of motion direction from time varying retinal images is a fundamental task of visual systems. Neurons that selectively respond to directional visual motion are found in almost all species. In many of them already in the retina direction selective neurons signal their preferred direction of movement. Scientific evidences suggest that direction selectivity is carried from the retina to higher brain areas. Here we adopt a simple integrate-and-fire neuron model, inspired by recent work of Casti et al. (2008), to investigate how directional selectivity changes in cells postsynaptic to directional selective retinal ganglion cells (DSRGC). Our model analysis shows that directional selectivity in the postsynaptic cells increases over a wide parameter range. The degree of directional selectivity positively correlates with the probability of burst-like firing of presynaptic DSRGCs. Postsynaptic potentials summation and spike threshold act together as a temporal filter upon the input spike train. Prior to the intricacy of neural circuitry between retina and higher brain areas, we suggest that sharpening is a straightforward result of the intrinsic spiking pattern of the DSRGCs combined with the summation of excitatory postsynaptic potentials and the spike threshold in postsynaptic neurons.

Keywords

Retina Ganglion cells Direction selectivity Integrate and fire model 

Abbreviations

DSRGC

direction selective retinal ganglion cell

LGN

lateral geniculate nucleus

SPN

simulated postsynaptic neuron

EPSP

excitatory postsynaptic potential

IPSP

inhibitory postsynaptic potential

DSi

Directional Selectivity index

AHP

After-Hyperpolarization

TFR

(spike) transfer ratio

iS

Index of sharpening

AOS

Accessory Optic System

References

  1. Ackert, J. M., Wu, S. H., Lee, J. C., Abrams, J., Hu, E. H., Perlman, I., et al. (2006). Light-induced changes in spike synchronization between coupled ON direction selective ganglion cells in the mammalian retina. The Journal of Neuroscience, 26(16), 4206–4215.PubMedCrossRefGoogle Scholar
  2. Alitto, H. J., & Usrey, W. M. (2005). Dynamic properties of thalamic neurons for vision. Progress in Brain Research, 149, 83–90.PubMedCrossRefGoogle Scholar
  3. Amthor, F. R., Takahashi, E. S., & Oyster, C. W. (1989). Morphologies of rabbit retinal ganglion cells with complex receptive fields. The Journal of Comparative Neurology, 280(1), 97–121.PubMedCrossRefGoogle Scholar
  4. Bair, W. (1999). Spike timing in the mammalian visual system. Current Opinion in Neurobiology, 9, 447–453.PubMedCrossRefGoogle Scholar
  5. Barlow, H. B., Hill, R. M., & Levick, W. R. (1964). Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. The Journal of Physiology, 173, 377–407.PubMedGoogle Scholar
  6. Barlow, H. B., Hill, R. M., & Levick, W. R. (1965). The mechanism of directionally selective units in rabbit’s retina. Journal of Physiology (London), 178, 477.Google Scholar
  7. Blitz, D. M., & Regehr, W. G. (2005). Timing and specificity of feed-forward inhibition within the LGN. Neuron, 45(6), 917–928.PubMedCrossRefGoogle Scholar
  8. Buhl, E. H., & Peichl, L. (1986). Morphology of rabbit retinal ganglion cells projecting to the medial terminal nucleus of the accessory optic system. The Journal of Comparative Neurology, 253(2), 163–174.PubMedCrossRefGoogle Scholar
  9. Carandini, M., & Ferster, D. (2000). Membrane potential and Firing rate in cat primary visual cortex. The Journal of Neuroscience, 20(1), 470–484.PubMedGoogle Scholar
  10. Carandini, M., Horton, J. C., & Sincich, L. C. (2007). Thalamic filtering of retinal spike trains by postsynaptic summation. Journal of Vision, 7(14), 1–11.PubMedCrossRefGoogle Scholar
  11. Casti, A., Hayot, F., Xiao, Y., & Kaplan, E. (2008). A simple model of retina-LGN transmission. Journal of Computational Neuroscience. doi:10.1007/s10827-007-0053-7.PubMedGoogle Scholar
  12. Cleland, B. G., & Lewick, W. R. (1974). Brisk and sluggish concentrically organized ganglion cells in the cat’s retina. The Journal of Physiology, 240, 421–456.PubMedGoogle Scholar
  13. Cleland, B. G., Lewick, W. R., Morstyn, R., & Wagner, H. G. (1976). Lateral geniculate relay of slowly conducting retinal afferents to cat visual cortex. The Journal of Physiology, 255, 299–320.PubMedGoogle Scholar
  14. Damjanovic, I., Maximova, E., & Maximov, V. (2009). Receptive field sizes of direction-selective units in the fish tectum. Journal of Integrative Neuroscience, 8(1), 77–93.PubMedCrossRefGoogle Scholar
  15. Dann, J. F., & Buhl, E. H. (1987). Retinal ganglion cells projecting to the accessory optic system in the rat. The Journal of Comparative Neurology, 262(1), 141–158.PubMedCrossRefGoogle Scholar
  16. Devries, S. H., & Baylor, D. A. (1997). Mosaic arrangement of ganglion cell receptive fields in rabbit retina. Journal of Neurophysiology, 78(4), 2048–2060.PubMedGoogle Scholar
  17. Godwin, D. W., Vaughan, J. W., & Sherman, S. M. (1996). Metabotropic glutamate receptors switch visual response mode of lateral geniculate nucleus cells from burst to tonic. Journal of Neurophysiology, 76, 1800–1816.Google Scholar
  18. Grasse, K. L., Cynader, M. S., & Douglas, R. M. (1984). Alterations in response properties in the lateral and dorsal terminal nuclei of the cat accessory optic system following visual cortex lesions. Experimental Brain Research, 55(1), 69–80.CrossRefGoogle Scholar
  19. Guido, W., Lu, S. M., Vaughan, J. W., Godwin, D. W., & Sherman, S. M. (1995). Receiver operating characteristic (ROC) analysis of neurons in the cat’s lateral geniculate nucleus during tonic and burst response mode. Visual Neuroscience, 12, 723–741.PubMedCrossRefGoogle Scholar
  20. He, S., & Masland, R. H. (1998). ON direction-selective ganglion cells in the rabbit retina: dendritic morphology and pattern of fasciculation. Visual Neuroscience, 15(2), 369–375.PubMedCrossRefGoogle Scholar
  21. Hoffmann, K. P., & Distler, C. (1989). Quantitative analysis of visual receptive fields of neurons in nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract in macaque monkey. Journal of Neurophysiology, 62(2), 416–428.PubMedGoogle Scholar
  22. Huberman, A. D., Wei, W., Elstrott, J., Stafford, B. K., Feller, M. B., & Barres, B. A. (2009). Genetic identification of an On-Off direction- selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. doi:10.1016/j.neuron.2009.04.014.
  23. Jack, J. J. B., Noble, D., & Tsien, R. W. (1975). Electric current flow in excitable cells. Oxford: Oxford University Press.Google Scholar
  24. Jagadeesh, B., Wheat, H. S., Kontsevich, L. L., Tyler, C. R., & Ferster, D. (1997). Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. Journal of Neurophysiology, 78, 2772–2789.PubMedGoogle Scholar
  25. Jensen, R. J., & Devoe, R. D. (1983). Comparisons of directionally selective with other ganglion cells of turtle retina: intracellular recording and staining. The Journal of Comparative Neurology, 17(3), 271–287.CrossRefGoogle Scholar
  26. Kara, P. A., & Reid, R. C. (2003). Efficacy of retinal spikes in driving cortical responses. The Journal of Neuroscience, 23(24), 8547–8557.PubMedGoogle Scholar
  27. Kim, I. J., Zhang, Y., Yamagata, M., Meister, M., & Sanes, J. R. (2008). Molecular identification of a retinal cell type that responds to upward motion. Nature, 452, 478–482.PubMedCrossRefGoogle Scholar
  28. Levick, W. R. (1967). Receptive fields and trigger features of ganglion cells in the visual streak of the rabbits retina. The Journal of Physiology, 188(3), 285–307.PubMedGoogle Scholar
  29. Levick, W. R., Oyster, C. W., & Takahashi, E. (1969). Rabbit lateral geniculate nucleus: sharpener of directional information. Science, 165(3894), 712–714.PubMedCrossRefGoogle Scholar
  30. Lu, S. M., Guido, W., & Sherman, S. M. (1992). Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2 conductance. Journal of Neurophysiology, 68, 1285–1298.Google Scholar
  31. Michael, C. R. (1966). Receptive fields of opponent color units in the optic nerve of the ground squirrel. Science, 152(3725), 1095–1097.PubMedCrossRefGoogle Scholar
  32. Mustari, M. J., & Fuchs, A. F. (1989). Response properties of single units in the lateral terminal nucleus of the accessory optic system in the behaving primate. Journal of Neurophysiology, 61(6), 1207–1220.PubMedGoogle Scholar
  33. Oyster, C. W. (1968). The analysis of image motion by the rabbit retina. The Journal of Physiology, 199, 613–635.PubMedGoogle Scholar
  34. Priebe, N., & Ferster, D. (2005). Direction selectivity of excitation and inhibitionin simple cells of the cat primary visual cortex. Neuron, 45, 133–145.PubMedCrossRefGoogle Scholar
  35. Priebe, N., & Ferster, D. (2008). Inhibition, spike threshold and stimulus selectivity in primary visual cortex. Neuron. doi:10.1016/j.neuron.2008.02.005.PubMedGoogle Scholar
  36. Pu, M. L., & Amthor, F. R. (1990). Dendritic morphologies of retinal ganglion cells projecting to the nucleus of the optic tract in the rabbit. The Journal of Comparative Neurology, 302(3), 657–674.PubMedCrossRefGoogle Scholar
  37. Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic inputs. Journal of Neurophysiology, 30, 1138–1168.PubMedGoogle Scholar
  38. Rathbun, D. L., Alitto, H. J., Weyand, T. G., & Usrey, W. M. (2007). Interspike interval analysis of retinal ganglion cell receptive fields. Journal of Neurophysiology, 98, 911–919.PubMedCrossRefGoogle Scholar
  39. Sincich, L. C., Adams, D. L., Economides, J. R., & Horton, J. C. (2007). Transmission of spike trains at retinogeniculate synapse. The Journal of Neuroscience, 27(10), 2683–2692.PubMedCrossRefGoogle Scholar
  40. Soodak, R. E., & Simpson, J. I. (1988). The accessory optic system of rabbit. I. Basic visual response properties. Journal of Neurophysiology, 60, 2037–2054.PubMedGoogle Scholar
  41. Stanford, L. R., & Sherman, S. M. (1984). Structure/function relationships of retinal ganglion cells in the cat. Brain Research, 297(2), 381–386.PubMedCrossRefGoogle Scholar
  42. Swadlow, H. A., & Gusev, A. G. (2001). The impact of “bursting” thalamic impulses at a neocortical synapse. Nature Neuroscience, 4, 402–408.PubMedCrossRefGoogle Scholar
  43. Swadlow, H. A., Gusev, A. G., & Bezdudnaya, T. (2002). Activation of a cortical column by a thalamocortical impulse (pdf). The Journal of Neuroscience, 22(17), 7766–7773.PubMedGoogle Scholar
  44. Taylor, W. R., & Vaney, D. I. (2002). Diverse synaptic mechanisms generate direction selectivity in the rabbit retina. The Journal of Neuroscience, 22(17), 7712–7720.PubMedGoogle Scholar
  45. Usrey, W. M. (2002). Spike timing and visual processing in the retinogeniculocortical pathway. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357, 1729–1737.PubMedCrossRefGoogle Scholar
  46. Usrey, W. M., Reppas, J. B., & Reid, R. C. (1998). Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature, 395(6700), 384–387.PubMedCrossRefGoogle Scholar
  47. Usrey, W. M., Reppas, J. B., & Reid, R. C. (1999). Specificity and strength of retinogeniculate connections. Journal of Neurophysiology, 82, 3527–3540.PubMedGoogle Scholar
  48. van der Togt, C., van der Want, J., & Schmidt, M. (1993). Segregation of direction selective neurons and synaptic organization of inhibitory intranuclear connections in the medial terminal nucleus of the rat: an electrophysiological and immunoelectron microscopical study. The Journal of Comparative Neurology, 338(2), 175–192.PubMedCrossRefGoogle Scholar
  49. Vaney, D. I., Levick, W. R., & Thibos, L. N. (1981a). Rabbit retinal ganglion cells. Receptive field classification and axonal conduction properties. Experimental Brain Research, 44(1), 27–33.CrossRefGoogle Scholar
  50. Vaney, D. I., Peichl, L., Wassle, H., & Illing, R. B. (1981b). Almost all ganglion cells in the rabbit retina project to the superior colliculus. Brain Research, 212(2), 447–453.PubMedCrossRefGoogle Scholar
  51. Volgushev, M., Pernberg, J., & Eysel, U. T. (2000). Comparision of the selectivity of the postsynaptic potentials and spike responses in cat visual cortex. The European Journal of Neuroscience, 12, 257–263.PubMedCrossRefGoogle Scholar
  52. Weng, S., Sun, W., & He, S. (2005). Identification of ON–OFF direction-selective ganglion cells in the mouse retina. The Journal of Physiology, 562(3), 915–923.PubMedCrossRefGoogle Scholar
  53. Wörgötter, F., & Koch, C. (1991). A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity. The Journal of Neuroscience, 11(7), 1959–1979.PubMedGoogle Scholar
  54. Yonehara, K., Ishikane, H., Sakuta, H., Shintani, T., Nakamura-Yonehara, K., et al. (2009). Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion. PLoS ONE, 4(1), e4320.PubMedCrossRefGoogle Scholar
  55. Zeck, G. M., & Masland, R. H. (2007). Spike train signatures of retinal ganglion cell types. The European Journal of Neuroscience, 26, 367–380.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Computer Science Department VITechnical University MunichGarchingGermany

Personalised recommendations