Journal of Computational Neuroscience

, Volume 30, Issue 2, pp 373–390 | Cite as

Synaptic and intrinsic determinants of the phase resetting curve for weak coupling

  • Srisairam Achuthan
  • Robert J. Butera
  • Carmen C. Canavier
Article

Abstract

A phase resetting curve (PRC) keeps track of the extent to which a perturbation at a given phase advances or delays the next spike, and can be used to predict phase locking in networks of oscillators. The PRC can be estimated by convolving the waveform of the perturbation with the infinitesimal PRC (iPRC) under the assumption of weak coupling. The iPRC is often defined with respect to an infinitesimal current as zi(ϕ), where ϕ is phase, but can also be defined with respect to an infinitesimal conductance change as zg(ϕ). In this paper, we first show that the two approaches are equivalent. Coupling waveforms corresponding to synapses with different time courses sample zg(ϕ) in predictably different ways. We show that for oscillators with Type I excitability, an anomalous region in zg(ϕ) with opposite sign to that seen otherwise is often observed during an action potential. If the duration of the synaptic perturbation is such that it effectively samples this region, PRCs with both advances and delays can be observed despite Type I excitability. We also show that changing the duration of a perturbation so that it preferentially samples regions of stable or unstable slopes in zg(ϕ) can stabilize or destabilize synchrony in a network with the corresponding dynamics.

Keywords

Weak coupling Phase resetting Infinitesimal PRC Synchronization 

References

  1. Achuthan, S., & Canavier, C. C. (2009). Phase resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators. The Journal of Neuroscience, 29(16), 5218–5233.PubMedCrossRefGoogle Scholar
  2. Acker, C. D., Kopell, N., & White, J. A. (2003). Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. Journal of Computational Neuroscience, 15(1), 71–90.PubMedCrossRefGoogle Scholar
  3. Bartos, M., Vida, I., Frotscher, M., Geiger, J. R. P., & Jonas, P. (2001). Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. The Journal of Neuroscience, 21(8), 2687–2698.PubMedGoogle Scholar
  4. Bean, B. P. (2007). The action potential in mammalian central neurons. Nature Reviews. Neuroscience, 8, 451–465.PubMedCrossRefGoogle Scholar
  5. Brown, E., Moehlis, J., & Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural Computation, 16(4), 673–715.PubMedCrossRefGoogle Scholar
  6. Buzsaki, G. (2006). Rhythms of the brain. New York: Oxford University Press Inc.CrossRefGoogle Scholar
  7. Canavier, C. C., Butera, R. J., Dror, R. O., Baxter, D. A., Clark, J. W., & Byrne, J. H. (1997). Phase response characteristics of model neurons determine which patterns are expressed in a ring circuit model of gait generation. Biological Cybernetics, 77(6), 367–380.PubMedCrossRefGoogle Scholar
  8. Canavier, C. C., Baxter, D. A., Clark, J. W., & Byrne, J. H. (1999). Control of multistability in ring circuits of oscillators. Biological Cybernetics, 80, 87–102.CrossRefGoogle Scholar
  9. Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling from ions to networks. Cambridge: MIT.Google Scholar
  10. Dror, R. O., Canavier, C. C., Butera, R. J., Clark, J. W., & Byrne, J. H. (1999). A mathematical criterion based on phase response curves for stability in a ring of coupled oscillators. Biological Cybernetics, 80, 11–23.PubMedCrossRefGoogle Scholar
  11. Ermentrout, G. B. (1996). Type I membranes, phase resetting curves and synchrony. Neural Computation, 8(5), 979–1001.PubMedCrossRefGoogle Scholar
  12. Ermentrout, G. B. (2002). Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Philadelphia: SIAM.CrossRefGoogle Scholar
  13. Ermentrout, G. B., & Kopell, N. (1984). Frequency plateaus in a chain of weakly coupled oscillators. I. SIAM Journal on Mathematical Analysis, 15(2), 215–237.CrossRefGoogle Scholar
  14. Ermentrout, G. B., & Kopell, N. (1990). Oscillator death in systems of coupled neural oscillators. SIAM Journal on Applied Mathematics, 50(1), 125–146.CrossRefGoogle Scholar
  15. Ermentrout, G. B., & Kopell, N. (1991). Multiple pulse interactions and averaging in coupled neural oscillators. Journal of Mathematical Biology, 29(3), 195–217.CrossRefGoogle Scholar
  16. Fell, J., Klaver, P., Lehnertz, K., Grunwald, T., Schaller, C., Elger, C. E., et al. (2001). Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nature Neuroscience, 4(12), 1259–1264.PubMedCrossRefGoogle Scholar
  17. Galan, R. F., Ermentrout, G. B., & Urban, N. N. (2005). Efficient estimation of phase resetting curves in real neurons and its significance for neural modeling. Physical Review Letters, 94(15), 158101.PubMedCrossRefGoogle Scholar
  18. Goel, P., & Ermentrout, G. B. (2002). Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D, 163(3–4), 191–216.CrossRefGoogle Scholar
  19. Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems and bifurcations of vector fields. New York: Springer-Verlag.Google Scholar
  20. Gutkin, B. S., Ermentrout, G. B., & Reyes, A. D. (2005). Phase-response curves give the responses of neurons to transient inputs. Journal of Neurophysiology, 94, 1623–1635.PubMedCrossRefGoogle Scholar
  21. Hairer, E. & Wanner, G. (1991). Solving ordinary differential equations II. Stiff and differential-algebraic problems. Springer series in computational mathematics, Vol 14. Berlin: Springer.PubMedCrossRefGoogle Scholar
  22. Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.PubMedCrossRefGoogle Scholar
  23. Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Computation, 7(2), 307–337.PubMedCrossRefGoogle Scholar
  24. Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. Journal de Physiologie, 107(2), 165–181.Google Scholar
  25. Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly connected neural networks. New York: Springer-Verlag.Google Scholar
  26. Huguenard, J. R., & McCormick, D. A. (2007). Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends in Neurosciences, 30(7), 350–356.PubMedCrossRefGoogle Scholar
  27. Hutchison, W. D., Dostrovsky, J. O., Walters, J. R., Courtemanche, R., Boraud, T., Goldberg, J., et al. (2004). Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. The Journal of Neuroscience, 24(42), 9240–9243.PubMedCrossRefGoogle Scholar
  28. Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10, 1171–1266.CrossRefGoogle Scholar
  29. Izhikevich, E. M. (2007). Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: MIT.Google Scholar
  30. Khoo, M. C. K. (2000). Physiological control systems: analysis, simulation and estimation. New York: IEEE.Google Scholar
  31. Lewis, T. J, & Rinzel, J. (2003). Dynamics of spiking neurons connected by both inhibitory and electrical coupling. Journal of Computational Neuroscience, 14(3), 283–309.Google Scholar
  32. Mancilla, J. G., Lewis, T. J., Pinto, D. J., Rinzel, J., & Connors, B. W. (2007). Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. The Journal of Neuroscience, 27(8), 2058–2073.PubMedCrossRefGoogle Scholar
  33. Maran, S. K., & Canavier, C. C. (2008). Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved. Journal of Computational Neuroscience, 24(1), 37–55.PubMedCrossRefGoogle Scholar
  34. Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35(1), 193–213.PubMedCrossRefGoogle Scholar
  35. Netoff, T. I., Acker, C. D., Bettencourt, J. C., & White, J. A. (2005). Beyond two-cell networks: experimental measurement of neuronal responses to multiple synaptic inputs. Journal of Computational Neuroscience, 18(3), 287–295.PubMedCrossRefGoogle Scholar
  36. Netoff, T. I., Banks, M. I., Dorval, A. D., Acker, C. D., Haas, J. S., Kopell, N., et al. (2005). Synchronization in hybrid neuronal networks of the hippocampal formation. Journal of Neurophysiology, 93, 1197–1208.PubMedCrossRefGoogle Scholar
  37. Oppenheim, A. V., Willsky, A. S., & Young, I. T. (1983). Signals and systems. Englewood Cliffs: Prentice-Hall.Google Scholar
  38. Oprisan, S. A., & Canavier, C. C. (2002). The influence of limit cycle topology on the phase resetting curve. Neural Computation, 14(5), 1027–1057.PubMedCrossRefGoogle Scholar
  39. Oprisan, S. A., Prinz, A. A., & Canavier, C. C. (2004). Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophysical Journal, 87(4), 2283–2298.PubMedCrossRefGoogle Scholar
  40. Perkel, D. H., Schulman, J. H., Bullock, T. H., Moore, G. P., & Segundo, J. P. (1964). Pacemaker neurons: effects of regularly spaced synaptic input. Science, 145(3627), 61–63.PubMedCrossRefGoogle Scholar
  41. Preyer, A. J., & Butera, R. J. (2005). Neuronal oscillators in aplysia californica that demonstrate weak coupling in vitro. Physical Review Letters, 95(13), 138103.PubMedCrossRefGoogle Scholar
  42. Rinzel, J., & Ermentrout, G. B. (1998). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling from ions to networks. Cambridge: MIT.Google Scholar
  43. Rodriguez, E., George, N., Lachaux, J. P., Martinerie, J., Renault, B., & Varela, F. J. (1999). Perception's shadow: long-distance synchronization of human brain activity. Nature, 397(6718), 430–433.PubMedCrossRefGoogle Scholar
  44. Sharp, A. A., O'Neil, M. B., Abbott, L. F., & Marder, E. (1993a). The dynamic clamp - artificial conductances in biological neurons. Trends in Neurosciences, 16(10), 389–394.PubMedCrossRefGoogle Scholar
  45. Sharp, A. A., O'Neil, M. B., Abbott, L. F., & Marder, E. (1993b). Dynamic clamp: computer-generated conductances in real neurons. Journal of Neurophysiology, 69, 992–995.PubMedGoogle Scholar
  46. Sieling, F. H., Canavier, C. C., & Prinz, A. A. (2009). Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition. Journal of Neurophysiology, 102, 69–84.PubMedCrossRefGoogle Scholar
  47. Stelt, O., van der Belger, A., & Lieberman, J. A. (2004). Macroscopic fast neuronal oscillations and synchrony in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 101(51), 17567–17568.PubMedCrossRefGoogle Scholar
  48. Tateno, T., & Robinson, H. P. C. (2007). Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex. Biophysical Journal, 92(2), 683–695.PubMedCrossRefGoogle Scholar
  49. Timofeev, I., & Steriade, M. (2004). Neocortical seizures: initiation, development and cessation. Neuroscience, 123(2), 299–336.PubMedCrossRefGoogle Scholar
  50. Traub, R. D., & Jefferys, J. G. (1994). Are there unifying principles underlying the generation of epileptic afterdischarges in vitro? Progress in Brain Research, 102, 383–394.PubMedCrossRefGoogle Scholar
  51. Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155–168.PubMedCrossRefGoogle Scholar
  52. Van Vreeswijk, C., Abbott, L. F., & Ermentrout, G. B. (1994). When inhibition not excitation synchronizes neural firing. Journal of Computational Neuroscience, 1(4), 313–321.PubMedCrossRefGoogle Scholar
  53. Wang, X. J., & Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of Neuroscience, 16(20), 6402–6413.PubMedGoogle Scholar
  54. Winfree, A. T. (1967). Biological rhythms and the behavior of populations of coupled oscillators. Journal of Theoretical Biology, 16, 15–42.PubMedCrossRefGoogle Scholar
  55. Winfree, A. T. (2001). The geometry of biological time. New York: Springer.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Srisairam Achuthan
    • 1
    • 4
  • Robert J. Butera
    • 3
  • Carmen C. Canavier
    • 1
    • 2
  1. 1.Neuroscience Center of ExcellenceLSU Health Sciences CenterNew OrleansUSA
  2. 2.Department of OphthalmologyLSU Health Sciences CenterNew OrleansUSA
  3. 3.Laboratory for Neuroengineering, School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  4. 4.Neuroscience Center of ExcellenceLSU Health Sciences CenterNew OrleansUSA

Personalised recommendations