Journal of Computational Neuroscience

, Volume 30, Issue 1, pp 69–84 | Cite as

Synaptic information transfer in computer models of neocortical columns

  • Samuel A. NeymotinEmail author
  • Kimberle M. Jacobs
  • André A. Fenton
  • William W. Lytton


Understanding the direction and quantity of information flowing in neuronal networks is a fundamental problem in neuroscience. Brains and neuronal networks must at the same time store information about the world and react to information in the world. We sought to measure how the activity of the network alters information flow from inputs to output patterns. Using neocortical column neuronal network simulations, we demonstrated that networks with greater internal connectivity reduced input/output correlations from excitatory synapses and decreased negative correlations from inhibitory synapses, measured by Kendall’s τ correlation. Both of these changes were associated with reduction in information flow, measured by normalized transfer entropy (nTE). Information handling by the network reflected the degree of internal connectivity. With no internal connectivity, the feedforward network transformed inputs through nonlinear summation and thresholding. With greater connectivity strength, the recurrent network translated activity and information due to contribution of activity from intrinsic network dynamics. This dynamic contribution amounts to added information drawn from that stored in the network. At still higher internal synaptic strength, the network corrupted the external information, producing a state where little external information came through. The association of increased information retrieved from the network with increased gamma power supports the notion of gamma oscillations playing a role in information processing.


Information transfer Neuronal networks Simulation Modeling 



We thank the anonymous reviewers for their insightful comments and suggestions on improvement of the manuscript.

We also thank Michael Hines and Ted Carnevale (Yale) for continuing support and assistance with the NEURON simulator, Andrey Olypher (Emory) for helpful discussions, Matthew Lazenka (VCU) for assistance with development of the neocortical model, and Larry Eberle (SUNY Downstate) for administration and network support at the Neurosimulation laboratory.


  1. Aldworth, Z., Miller, J., Gedeon, T., Cummins, G., & Dimitrov, A. (2005). Dejittered spike-conditioned stimulus waveforms yield improved estimates of neuronal feature selectivity and spike-timing precision of sensory interneurons. Journal of Neuroscience, 25(22), 5323–5332.CrossRefPubMedGoogle Scholar
  2. Bartos, M., Vida, I., & Jonas, P. (2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Reviews. Neuroscience, 8(1), 45–56.CrossRefPubMedGoogle Scholar
  3. Belitski, A., Gretton, A., Magri, C., Murayama, Y., Montemurro, M., Logothetis, N., et al. (2008). Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. Journal of Neuroscience, 28(22), 5696–5709.CrossRefPubMedGoogle Scholar
  4. Börgers, C., & Kopell, N. (2005). Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons. Neural Computation, 17, 557–608.CrossRefPubMedGoogle Scholar
  5. Brunel, N. (2000). Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons. Journal of Physiology (Paris), 94, 445–463.CrossRefGoogle Scholar
  6. Brunel, N., & Wang, X. (2003). What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. Journal of Neurophysiology, 90, 415–430.CrossRefPubMedGoogle Scholar
  7. Buonomano, D. (2009). Harnessing chaos in recurrent neural networks. Neuron, 63, 423–425.CrossRefPubMedGoogle Scholar
  8. Buonomano, D., & Maass, W. (2009). State-dependent computations: Spatiotemporal processing in cortical networks. Nature Reviews. Neuroscience, 10(2), 113–125.CrossRefPubMedGoogle Scholar
  9. Carnevale, N., & Hines, M. (2006). The NEURON book. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  10. Dehaene, S., & Changeux, J. (2005). Ongoing spontaneous activity controls access to consciousness: A neuronal model for inattentional blindness. PLoS Biology, 3(5), e141.CrossRefPubMedGoogle Scholar
  11. Destexhe, A., & Contreras, D. (2006). Neuronal computations with stochastic network states. Science, 314(5796), 85–90.CrossRefPubMedGoogle Scholar
  12. Destexhe, A., Mainen, Z., & Sejnowski, T. (1994). An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Computation, 6, 14–18.CrossRefGoogle Scholar
  13. Douglas, R., Martin, K., & Whitteridge, D. (1989). A canonical microcircuit for neocortex. Neural Computation, 1, 480–488.CrossRefGoogle Scholar
  14. Edelman, G. (1987). Neural Darwinism: The theory of neuronal group selection. New York: Basic Books.Google Scholar
  15. French, R. (1991). Using semi-distributed representations to overcome catastrophic forgetting in connectionist networks. In Proceedings of the 13th annual cognitive science society conference (pp. 173–178). Hillsdale: Erlbaum.Google Scholar
  16. Friesen, W., & Friesen, J. (1994). NeuroDynamix, a computer-based system for simulating neuronal properties. New York: Oxford Univ. Press.Google Scholar
  17. Gourevitch, B., & Eggermont, J. (2007). Evaluating information transfer between auditory cortical neurons. Journal of Neurophysiology, 97(3), 2533–2543.CrossRefPubMedGoogle Scholar
  18. Gray, C., & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 86, 1698–1702.CrossRefPubMedGoogle Scholar
  19. Halgren, E., Walter, R., Cherlow, D., & Crandall, P. (1978). Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala. Brain, 101(1), 83.CrossRefPubMedGoogle Scholar
  20. Hill, S., & Tononi, G. (2005). Modeling sleep and wakefulness in the thalamocortical system. Journal of Neurophysiology, 93, 1671–1698.CrossRefPubMedGoogle Scholar
  21. Hines, M., & Carnevale, N. (2001). NEURON: A tool for neuroscientists. The Neuroscientist, 7, 123–135.CrossRefPubMedGoogle Scholar
  22. Hlavácková-Schindler, K., Palus, M., Vejmelka, M., & Bhattacharya, J. (2007). Causality detection based on information-theoretic approaches in time series analysis. Physics Reports, 441, 1–46.CrossRefGoogle Scholar
  23. Izhikevich, E., & Edelman, G. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences of the United States of America, 105(9), 3593–3598.CrossRefPubMedGoogle Scholar
  24. Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304, 78–80.CrossRefPubMedGoogle Scholar
  25. Jumarie, G. (1990). Relative information: Theories and applications. New York: Springer.Google Scholar
  26. Kendall, M. (1938). A new measure of rank correlation. Biometrika, 30(1–2), 81–93.Google Scholar
  27. Knight, W. (1966). A computer method for calculating Kendall’s tau with ungrouped data. Journal of the American Statistical Association, 61(314), 436–439.CrossRefGoogle Scholar
  28. Lazar, A., & Pnevmatikakis, E. (2008). Faithful representation of stimuli with a population of integrate-and-fire neurons. Neural Computation, 20(11), 2715–2744.CrossRefPubMedGoogle Scholar
  29. Lytton, W. (1996). Optimizing synaptic conductance calculation for network simulations. Neural Computation, 8, 501–510.CrossRefPubMedGoogle Scholar
  30. Lytton, W. (1998). Adapting a feedforward heteroassociative network to Hodgkin–Huxley dynamics. Journal of Computational Neuroscience, 5, 353–364.CrossRefPubMedGoogle Scholar
  31. Lytton, W. (2006). Neural query system: Data-mining from within the NEURON simulator. Neuroinformatics, 4, 163–176.CrossRefPubMedGoogle Scholar
  32. Lytton, W., & Omurtag, A. (2007). Tonic-clonic transitions in computer simulation. Journal of Clinical Neurophysiology, 24, 175–181.CrossRefPubMedGoogle Scholar
  33. Lytton, W., & Sejnowski, T. (1991). Inhibitory interneurons may help synchronize oscillations in cortical pyramidal neurons. Journal of Neurophysiology, 66, 1059–1079.PubMedGoogle Scholar
  34. Lytton, W., & Stewart, M. (2007). Data mining through simulation. Methods in Molecular Biology, 401, 155–166.CrossRefPubMedGoogle Scholar
  35. Lytton, W., Neymotin, S., & Hines, M. (2008). The virtual slice setup. Journal of Neuroscience Methods, 171, 309–315.CrossRefPubMedGoogle Scholar
  36. Marschinski, R., & Kantz, H. (2002). Analysing the information flow between financial time series. European Physical Journal B, Condensed Matter Physics, 30(2), 275–281.Google Scholar
  37. Mazzoni, A., Panzeri, S., Logothetis, N., & Brunel, N. (2008). Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Computational Biology, 4(12), e1000239.CrossRefPubMedGoogle Scholar
  38. McCloskey, M., & Cohen, N. (1989). Catastrophic interference in connectionist networks: The sequential learning problem. Chapter in The psychology of learning and motivation: Advances in research and theory (Vol. 24). Maryland Heights: Academic.Google Scholar
  39. McDonnell, M., Stocks, N., Pearce, C., & Abbott, D. (2003). Stochastic resonance and data processing inequality. Electronics Letters (IEEE), 39(17), 1287–1288.CrossRefGoogle Scholar
  40. Moser, E., & Moser, M. (1999). Is learning blocked by saturation of synaptic weights in the hippocampus. Neuroscience and Biobehavioral Reviews, 23, 661–672.CrossRefPubMedGoogle Scholar
  41. Nelson, S. (2002). Cortical microcircuits: Diverse or canonical. Neuron, 36, 19–27.CrossRefPubMedGoogle Scholar
  42. Paluš, M. (1996). Detecting nonlinearity in multivariate time series. Physics Letters A, 213(3–4), 138–147.Google Scholar
  43. Penfield, W. (1958). Some mechanisms of consciousness discovered during electrical stimulation of the brain. Proceedings of the National Academy of Sciences of the United States of America, 44(2), 51–66.CrossRefPubMedGoogle Scholar
  44. Phillips, W., & Silverstein, S. (2003). Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behavioral and Brain Sciences, 26(01), 65–82.CrossRefPubMedGoogle Scholar
  45. Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. (2007). Numerical recipes: The art of scientific computing. Cambridge: Cambridge University Press.Google Scholar
  46. Quiroga, R., & Panzeri, S. (2009). Extracting information from neuronal populations: Information theory and decoding approaches. Nature Reviews Neuroscience, 10(3), 173–185.CrossRefGoogle Scholar
  47. Rao, R., & Sejnowski, T. (2001). Spike-timing-dependent Hebbian plasticity as temporal difference learning. Neural Computation, 13(10), 2221–2237.CrossRefPubMedGoogle Scholar
  48. Ratcliff, R. (1990). Connectionist models of recognition memory: Constraints imposed by learning and forgetting functions. Psychological Review, 97(2), 285–308.CrossRefPubMedGoogle Scholar
  49. Rieke, F., Warland, D., & Bialek, W. (1999). Spikes: Exploring the neural code. Cambridge: MIT.Google Scholar
  50. Salinas, E., & Sejnowski, T. (2001). Correlated neuronal activity and the flow of neural information. Nature Reviews Neuroscience, 2(8), 539–550.CrossRefPubMedGoogle Scholar
  51. Salinas, E., & Sejnowski, T. (2002). Integrate-and-fire neurons driven by correlated stochastic input. Neural Computation, 14(9), 2111–2155.CrossRefPubMedGoogle Scholar
  52. Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85(2), 461–464.CrossRefPubMedGoogle Scholar
  53. Sirota, A., Montgomery, S., Fujisawa, S., Isomura, Y., Zugaro, M., & Buzsáki, G. (2008). Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron, 60, 683–697.CrossRefPubMedGoogle Scholar
  54. Spencer, K., Nestor, P., Niznikiewicz, M., Salisbury, D., Shenton, M., & Carley, R. (2003). Abnormal neural synchrony in schizophrenia. Journal of Neuroscience, 23, 7407–7411.PubMedGoogle Scholar
  55. Spencer, K., Nestor, P., Perlmutter, R., Niznikiewicz, M., Klump, M., Frumin, M., et al. (2004) Neural synchrony indexes disordered perception and cognition in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 101, 17288–17293.CrossRefPubMedGoogle Scholar
  56. Sporns, O., Tononi, G., & Kotter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1(4), e42.CrossRefPubMedGoogle Scholar
  57. Tiesinga, P., & Sejnowski, T. (2009). Cortical enlightenment: Are attentional gamma oscillations driven by ing or ping? Neuron, 63(6), 727–732.CrossRefPubMedGoogle Scholar
  58. Traub, R., Jefferys, J., & Whittington, M. (1999). Fast oscillations in cortical circuits. Cambridge: MIT.Google Scholar
  59. Uhlhaas, P., & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52, 155–168.CrossRefPubMedGoogle Scholar
  60. Uhlhaas, P., Linden, D., Singer, W., Haenschel, C., Lindner, M., Maurer, K., et al. (2006). Dysfunctional long-range coordination of neural activity during gestalt perception in schizophrenia. Journal of Neuroscience, 26, 8168–8175.CrossRefPubMedGoogle Scholar
  61. Uhlrich, D., Manning, K., Laughlin, M., & Lytton, W. (2005). Photic-induced sensitization: Acquisition of an augmenting spike-wave response in the adult rat through repeated strobe exposure. Journal of Neurophysiology, 94, 3925–3937.CrossRefPubMedGoogle Scholar
  62. Victor, J. (2006). Approaches to information-theoretic analysis of neural activity. Biological Theory, 1(3), 302–316.CrossRefPubMedGoogle Scholar
  63. Vogels, T., Rajan, K., & Abbott, L. (2005). Neural network dynamics. Annual Review of Neuroscience, 28, 357–376.CrossRefPubMedGoogle Scholar
  64. Von der Malsburg, C., & Schneider, W. (1986). A neural cocktail-party processor. Biological Cybernetics, 54, 29–40.CrossRefPubMedGoogle Scholar
  65. Wang, X., & Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16, 6402–6413.PubMedGoogle Scholar
  66. Zhu, J., Lytton, W., Xue, J., & Uhlrich, D. (1999a). An intrinsic oscillation in interneurons of the rat lateral geniculate nucleus. Journal of Neurophysiology, 81, 702–711.PubMedGoogle Scholar
  67. Zhu, J., Uhlrich, D., & Lytton, W. (1999b). Burst firing in identified interneurons of the rat lateral geniculate nucleus. Neuroscience, 91, 1445–1460.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Samuel A. Neymotin
    • 1
    Email author
  • Kimberle M. Jacobs
    • 2
  • André A. Fenton
    • 1
    • 3
    • 4
  • William W. Lytton
    • 1
    • 3
    • 5
  1. 1.Biomedical EngineeringSUNY Downstate Medical CenterBrooklynUSA
  2. 2.Departments of Anatomy and NeurobiologyVirginia Commonwealth UniversityRichmondUSA
  3. 3.Department of Physiology and PharmacologySUNY Downstate Medical CenterBrooklynUSA
  4. 4.Center for Neural ScienceNew York UniversityNew YorkUSA
  5. 5.Department of NeurologySUNY Downstate Medical CenterBrooklynUSA

Personalised recommendations