Journal of Computational Neuroscience

, Volume 28, Issue 3, pp 579–594 | Cite as

Functional consequences of correlated excitatory and inhibitory conductances in cortical networks

  • Jens Kremkow
  • Laurent U. Perrinet
  • Guillaume S. Masson
  • Ad Aertsen


Neurons in the neocortex receive a large number of excitatory and inhibitory synaptic inputs. Excitation and inhibition dynamically balance each other, with inhibition lagging excitation by only few milliseconds. To characterize the functional consequences of such correlated excitation and inhibition, we studied models in which this correlation structure is induced by feedforward inhibition (FFI). Simple circuits show that an effective FFI changes the integrative behavior of neurons such that only synchronous inputs can elicit spikes, causing the responses to be sparse and precise. Further, effective FFI increases the selectivity for propagation of synchrony through a feedforward network, thereby increasing the stability to background activity. Last, we show that recurrent random networks with effective inhibition are more likely to exhibit dynamical network activity states as have been observed in vivo. Thus, when a feedforward signal path is embedded in such recurrent network, the stabilizing effect of effective inhibition creates an suitable substrate for signal propagation. In conclusion, correlated excitation and inhibition support the notion that synchronous spiking may be important for cortical processing.


Correlated conductances Synaptic integration Sparse coding Signal propagation 



For helpful discussions we thank Yves Fregnac and Arvind Kumar, the latter also for his careful reading of the manuscript. We thank the reviewers for helpful suggestions. This work was supported by the German Federal Ministry of Education and Research (BMBF grant 01GQ0420 to BCCN Freiburg), by the German Research Council (DFG SFB-780), by the CNRS and the 6th RFP of the EU (grant no. 15879-FACETS).


  1. Abeles, M. (1991). Corticonics: Neural circuits of the cerebral cortex. Cambridge University Press.Google Scholar
  2. Abeles, M., Hayon, G., & Lehmann, D. (2004). Modeling compositionality by dynamic binding of synfire chains. Journal of Computational Neuroscience, 17(2), 179–201.CrossRefPubMedGoogle Scholar
  3. Aertsen, A., Diesmann, M., & Gewaltig, M.-O. (1996). Propagation of synchronous spiking activity in feedforward neural networks. Journal of Physiology (Paris), 90(3–4), 243–247.CrossRefGoogle Scholar
  4. Assisi, C. G., Stopfer, M., Laurent, G., & Bazhenov, M. (2007). Adaptive regulation of sparseness by feedforward inhibition. Nature Neuroscience, 10(9), 1176–1184.CrossRefPubMedGoogle Scholar
  5. Atallah, B. V., & Scanziani, M. (2009). Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron, 62(4), 566–577.CrossRefPubMedGoogle Scholar
  6. Aviel, Y., Mehring, C., Abeles, M., & Horn, D. (2003). On embedding synfire chains in a balanced network. Neural Computation, 15(6), 1321–1340.CrossRefPubMedGoogle Scholar
  7. Brémaud, A., West, D. C., & Thomson, A. M. (2007). Binomial parameters differ across neocortical layers and with different classes of connections in adult rat and cat neocortex. Proceedings of the National Academy of Sciences of the United States of America, 104(35), 14134–14139.CrossRefPubMedGoogle Scholar
  8. Braitenberg, V., & Schüz, A. (1991). Cortex: Anatomy of the cortex: Statistics and geometry. Springer.Google Scholar
  9. Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8(3), 183–208.CrossRefPubMedGoogle Scholar
  10. Bruno, R. M., & Sakmann, B. (2006). Cortex is driven by weak but synchronously active thalamocortical synapses. Science, 312(5780), 1622–1627.CrossRefPubMedGoogle Scholar
  11. Buzsáki, G. (1984). Feed-forward inhibition in the hippocampal formation. Progress in Neurobiology, 22(2), 131–153.CrossRefPubMedGoogle Scholar
  12. Cruikshank, S. J., Lewis, T. J., & Connors, B. W. (2007). Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nature Neuroscience, 10(4), 462–468.PubMedGoogle Scholar
  13. Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D., et al. (2009). PyNN: A common interface for neuronal network simulators. Frontiers in Neuroinformatics, 2, 11. doi: 10.3389/neuro.11/011.2008.Google Scholar
  14. Delorme, A. (2003). Early cortical orientation selectivity: How fast inhibition decodes the order of spike latencies. Journal of Computational Neuroscience, 15(3), 357–365.CrossRefPubMedGoogle Scholar
  15. Destexhe, A., Contreras, D., & Steriade, M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of Neurophysiology, 79(2), 999–1016.PubMedGoogle Scholar
  16. Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews. Neuroscience, 4(9), 739–751.CrossRefPubMedGoogle Scholar
  17. Diesmann, M., Gewaltig, M.-O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402(6761), 529–533.CrossRefPubMedGoogle Scholar
  18. Eppler, J. M., Helias, M., Muller, E., Diesmann, M., & Gewaltig, M.-O. (2009). PyNEST: A convenient interface to the nest simulator. Frontiers in Neuroinformatics, 2, 12. doi: 10.3389/neuro.11/012.2008 Google Scholar
  19. Gerstein, G., & Mandelbrot, B. (1964). Random walk Models for the spike activity of a single neuron. Biophysical Journal, 4, 41–68.CrossRefPubMedGoogle Scholar
  20. Gewaltig, M.-O., & Diesmann, M. (2007). NEST (neural simulation tool). Scholarpedia, 2(4), 1430.CrossRefGoogle Scholar
  21. Gewaltig, M.-O., Diesmann, M., & Aertsen, A. (2001). Propagation of cortical synfire activity: Survival probability in single trials and stability in the mean. Neural Networks, 14(6–7), 657–673.CrossRefPubMedGoogle Scholar
  22. Gibson, J. R., Beierlein, M., & Connors, B. W. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature, 402(6757), 75–79.CrossRefPubMedGoogle Scholar
  23. Haider, B., Krause,M. R., Duque,A., Yu, Y., Touryan, J., Mazer, J. A., et al. (2010). Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. Neuron, 65(1), 107–121.CrossRefPubMedGoogle Scholar
  24. Hasenstaub, A. R., Shu, Y., Haider, B., Kraushaar, U., Duque, A., & McCormick, D. (2005). Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron, 47(3), 423–435.CrossRefPubMedGoogle Scholar
  25. Higley, M. J., & Contreras, D. (2006). Balanced excitation and inhibition determine spike timing during frequency adaptation. Journal of Neuroscience, 26(2), 448–457.CrossRefPubMedGoogle Scholar
  26. Hirsch, J. A., & Gilbert, C. D. (1991). Synaptic physiology of horizontal connections in the cat’s visual cortex. Journal of Neuroscience, 11(6), 1800–1809.PubMedGoogle Scholar
  27. Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biological Cybernetics, 82(2), 111–121.CrossRefPubMedGoogle Scholar
  28. Inoue, T., & Imoto, K. (2006). Feedforward inhibitory connections from multiple thalamic cells to multiple regular-spiking cells in layer 4 of the somatosensory cortex. Journal of Neurophysiology, 96(4), 1746–1754.CrossRefPubMedGoogle Scholar
  29. Kapfer, C., Glickfeld, L. L., Atallah, B. V., & Scanziani, M. (2007). Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nature Neuroscience, 10(6), 743–753.CrossRefPubMedGoogle Scholar
  30. Kremkow, J., Perrinet, L., Aertsen, A., Masson, G. S. (2008a). Functional properties of feed-forward inhibition. Proc NeuroComp 2008Google Scholar
  31. Kremkow, J., Perrinet, L., Baudot, P., Levy, M., Marre, O., Monier, C. et al. (2008b). Control of the temporal interplay between excitation and inhibition by the statistics of visual input: A V1 network modelling study. Vol. Soc. Neurosci. Abstr. (p. 366.5/II10).Google Scholar
  32. Kremkow, J., Perrinet, L., Masson, G. S., & Aertsen, A. (2009). Functional consequences of correlated excitation and inhibition on single neuron integration and signal propagation through synfire chains. Proceedings of the 32nd Göttingen Neurobiology Conference T26-6B.Google Scholar
  33. Kuhn, A., Aertsen, A., & Rotter S. (2004). Neuronal integration of synaptic input in the fluctuation-driven regime. Journal of Neuroscience, 24(10), 2345–2356.CrossRefPubMedGoogle Scholar
  34. Kumar, A., Rotter, S., & Aertsen, A. (2008a). Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. Journal of Neuroscience, 28(20), 5268–5280.CrossRefPubMedGoogle Scholar
  35. Kumar, A., Schrader, S., Aertsen, A., & Rotter, S. (2008b). The high-conductance state of cortical networks. Neural Computation, 20(1), 1–43.CrossRefPubMedGoogle Scholar
  36. Kumbhani, R. D., Nolt, M. J., & Palmer, S. E., (2007). Precision, reliability, and information-theoretic analysis of visual thalamocortical neurons. Journal of Neurophysiology, 98(5), 2647–2663.CrossRefPubMedGoogle Scholar
  37. Lampl, I., Reichova, I., & Ferster, D. (1999). Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron, 22(2), 361–374.CrossRefPubMedGoogle Scholar
  38. Litvak, V., Sompolinsky, H., Segev, I., & Abeles, M. (2003). On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. Journal of Neuroscience, 23(7), 3006–3015.PubMedGoogle Scholar
  39. Mainen, Z. F., & Sejnowski, T. J., (1995). Reliability of spike timing in neocortical neurons. Science, 268(5216), 1503–1506.CrossRefPubMedGoogle Scholar
  40. Marre, O., Baudot, P., Levy, M., & Frégnac, Y. (2005). High timing precision and reliability, low redundancy and low entropy code in V1 neurons during visual processing of natural scenes. Society for Neuroscience Abstracts, 31, 285.5.Google Scholar
  41. Mehring, C., Hehl, U., Kubo, M., Diesmann, M., & Aertsen, A. (2003). Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biological Cybernetics, 88(5), 395–408.CrossRefPubMedGoogle Scholar
  42. Molnár, G., Oláh, S., Komlósi, G., Füle, M., Szabadics, J., Varga, C., et al. (2008). Complex events initiated by individual spikes in the human cerebral cortex. PLoS Biol, 6(9), e222.CrossRefGoogle Scholar
  43. Morrison, A., Mehring, C., Geisel, T., Aertsen, A., & Diesmann, M. (2005). Advancing the boundaries of high-connectivity network simulation with distributed computing. Neural Computation, 17(8), 1776–1801.CrossRefPubMedGoogle Scholar
  44. Muller, E., Buesing, L., Schemmel, J., & Meier, K. (2007). Spike-frequency adapting neural ensembles: Beyond mean adaptation and renewal theories. Neural Computation, 19(11), 2958–3010.CrossRefPubMedGoogle Scholar
  45. Nawrot, M. P., Boucsein, C., Molina, V. R., Riehle, A., Aertsen, A., & Rotter, S. (2008). Measurement of variability dynamics in cortical spike trains. Journal of Neuroscience Methods, 169(2), 374–390.CrossRefPubMedGoogle Scholar
  46. Nowak, L. G., Azouz, R., Sanchez-Vives, M. V., Gray, C. M., & McCormick, D. A. (2003). Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. Journal of Neurophysiology, 89(3), 1541–1566.CrossRefPubMedGoogle Scholar
  47. Okun, M., & Lampl, I. (2008). Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nature Neuroscience, 11(5), 535–537.CrossRefPubMedGoogle Scholar
  48. Pinto, D. J., Hartings, J. A., Brumberg, J. C., & Simons, D. J. (2003). Cortical damping: Analysis of thalamocortical response transformations in rodent barrel cortex. Cerebral Cortex, 13(1), 33–44.CrossRefPubMedGoogle Scholar
  49. Pouille, F., & Scanziani, M. (2001). Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science, 293(5532), 1159–1163.CrossRefPubMedGoogle Scholar
  50. Povysheva, N. V., Gonzalez-Burgos, G., Zaitsev, A. V., Kröner, S., Barrionuevo, G., Lewis, D. A., & Krimer, L. S. (2006). Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex. Cerebral Cortex, 16(4), 541–552.CrossRefPubMedGoogle Scholar
  51. Rudolph, M., Pospischil, M., Timofeev, I., & Destexhe, A. (2007). Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. Journal of Neuroscience, 27(20), 5280–5290.CrossRefPubMedGoogle Scholar
  52. Schrader, S., Morrison, A., & Diesmann, M. (2007). A composition machine for complex movements. Proceedings of the 31st Göttingen Neurobiology Conference TS18-1C.Google Scholar
  53. Shadlen, M. N., & Newsome, W. T. (1994). Noise, neural codes and cortical organization. Current Opinion in Neurobiology, 4(4), 569–579.CrossRefPubMedGoogle Scholar
  54. Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. Journal of Neuroscience, 18(10), 3870–3896.PubMedGoogle Scholar
  55. Silberberg, G., & Markram, H. (2007). Disynaptic inhibition between neocortical pyramidal cells mediated by martinotti cells. Neuron, 53(5), 735–746.CrossRefPubMedGoogle Scholar
  56. Smith, M., & Kohn, A. (2008). Spatial and temporal scales of neuronal correlation in primary visual cortex. Journal of Neuroscience, 28(48), 12591–12603.CrossRefPubMedGoogle Scholar
  57. Somers, D. C., Nelson, S. B., & Sur, M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience, 15(8), 5448-5465.PubMedGoogle Scholar
  58. Stepanyants, A., Hirsch, J., Martinez, L. M., Kisvárday, Z. F., Ferecskó, A. S., & Chklovskii, D-B. (2008). Local potential connectivity in cat primary visual cortex. Cerebral Cortex, 18(1), 13–28.CrossRefPubMedGoogle Scholar
  59. Swadlow, H. A. (2003). Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. Cerebral Cortex, 13(1), 25–32.CrossRefPubMedGoogle Scholar
  60. Tetzlaff, T., Geisel, T., & Diesmann, M. (2002). The ground state of cortical feed-forward networks. Neurocomputing, 44–46, 673–678.CrossRefGoogle Scholar
  61. Thomson, A. M., West, D. C., Wang, Y., & Bannister, A. P. (2002). Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: Triple intracellular recordings and biocytin labelling in vitro. Cerebral Cortex, 12(9), 936–953.CrossRefPubMedGoogle Scholar
  62. Tiesinga, P., Fellous, J.-M., & Sejnowski, T. J. (2008). Regulation of spike timing in visual cortical circuits. Nature Reviews. Neuroscience, 9(2), 97–107.CrossRefPubMedGoogle Scholar
  63. Troyer, T. W., Krukowski, A. E., Priebe, N. J., & Miller, K. D. (1998). Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. Journal of Neuroscience, 18(15), 5908–5927.PubMedGoogle Scholar
  64. Tucker, T. R., & Katz, L. C. (2003a). Recruitment of local inhibitory networks by horizontal connections in layer 2/3 of ferret visual cortex. Journal of Neurophysiology, 89(1), 501–512.CrossRefPubMedGoogle Scholar
  65. Tucker, T. R., & Katz, L. C. (2003b). Spatiotemporal patterns of excitation and inhibition evoked by the horizontal network in layer 2/3 of ferret visual cortex. Journal of Neurophysiology, 89(1), 488–500.CrossRefPubMedGoogle Scholar
  66. van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274(5293), 1724–1746.CrossRefPubMedGoogle Scholar
  67. Vogels, T. P., & Abbott, L. F. (2009). Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nature Neuroscience, 12(4), 483–491.CrossRefPubMedGoogle Scholar
  68. Wehr, M. S., & Zador, A. M. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426(6965), 442–446.CrossRefPubMedGoogle Scholar
  69. Yger, P., Bruderle, D., Eppler, J., Kremkow J., Pecevski, D., Perrinet, L., et al. (2009). NeuralEnsemble: Towards a meta-environment for network modeling and data analysis. Eight Göttingen Meeting of the German neuroscience society (pp. T26–4C).

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jens Kremkow
    • 1
    • 2
    • 3
  • Laurent U. Perrinet
    • 1
  • Guillaume S. Masson
    • 1
  • Ad Aertsen
    • 2
    • 3
  1. 1.Institut de Neurosciences Cognitives de la MéditerranéeUMR6193 CNRS—Aix-Marseille UniversitéMarseille Cedex 20France
  2. 2.Neurobiology and Biophysics, Faculty of BiologyAlbert-Ludwig UniversityFreiburgGermany
  3. 3.Bernstein Center for Computational NeuroscienceFreiburgGermany

Personalised recommendations