Journal of Computational Neuroscience

, Volume 30, Issue 1, pp 109–124 | Cite as

Local non-linear interactions in the visual cortex may reflect global decorrelation

Article

Abstract

The classical receptive field in the primary visual cortex have been successfully explained by sparse activation of relatively independent units, whose tuning properties reflect the statistical dependencies in the natural environment. Robust surround modulation, emerging from stimulation beyond the classical receptive field, has been associated with increase of lifetime sparseness in the V1, but the system-wide modulation of response strength have currently no theoretical explanation. We measured fMRI responses from human visual cortex and quantified the contextual modulation with a decorrelation coefficient (d), derived from a subtractive normalization model. All active cortical areas demonstrated local non-linear summation of responses, which were in line with hypothesis of global decorrelation of voxels responses. In addition, we found sensitivity to surrounding stimulus structure across the ventral stream, and large-scale sensitivity to the number of simultaneous objects. Response sparseness across voxel population increased consistently with larger stimuli. These data suggest that contextual modulation for a stimulus event reflect optimization of the code and perhaps increase in energy efficiency throughout the ventral stream hierarchy. Our model provides a novel prediction that average suppression of response amplitude for simultaneous stimuli across the cortical network is a monotonic function of similarity of response strengths in the network when the stimuli are presented alone.

Keywords

Functional magnetic resonance imaging Efficient coding Ventral stream Information theory Energy consumption 

Notes

Acknowledgements

We thank Jarmo Hurri for help in stimulus preparation, mathematics and comments on the manuscript. Marita Kattelus, Lauri Nurminen and Linda Henriksson helped in the measurements, and Linda Henriksson, Lauri Nurminen and Juha Silvanto gave insightful comments on the manuscript. Interpretation of the results have been discussed with Alessandra Angelucci, Jussi Saarinen and Aapo Hyvärinen. Mika Seppä and Lauri Parkkonen helped with mathematics. This study has been supported by the Academy of Finland grant numbers 210347, 124698, 111817, and national centre of excellence-program 2006–2011.

Supplementary material

10827_2010_239_MOESM1_ESM.pdf (1.1 mb)
Supplementary material (PDF 1173 kb)

References

  1. Angelucci, A., & Bressloff, P. C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Progress in Brain Research, 154, 93–120.CrossRefPubMedGoogle Scholar
  2. Angelucci, A., Levitt, J. B., Walton, E. J., Hupé, J. M., Bullier, J., & Lund, J. S. (2002). Circuits for local and global signal integration in primary visual cortex. The Journal of Neuroscience, 22, 8633–8646.PubMedGoogle Scholar
  3. Atick, J. J., & Redlich, A. N. (1990). Towards a theory of early visual processing. Neural Computation, 2, 308–320.CrossRefGoogle Scholar
  4. Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 21, 1133–1145.PubMedGoogle Scholar
  5. Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population coding and computation. Nature Reviews. Neuroscience, 7, 358–366.CrossRefPubMedGoogle Scholar
  6. Baddeley, R., Abbott, L. F., Booth, M. C., Sengpiel, F., Freeman, T., Wakeman, E. A., et al. (1997). Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc Biol Sci, 264, 1775–1783.CrossRefPubMedGoogle Scholar
  7. Barlow, H. (1961). Possible principles underlying the transformation of sensory messages. In W. Rosenblith (Ed.), Sensory communication (pp. 217–234). Cambridge: MIT Press.Google Scholar
  8. Barlow, H. B. (1989). Unsupervised learning. Neural Computation, 1, 295–311.CrossRefGoogle Scholar
  9. Barlow, H., & Földiák, P. (1989). Adaptation and decorrelation in the cortex. In R. Durbin, C. Miall, & G. Mitchison (Eds.), The computing neuron (pp. 54–72). Boston: Addison-Wesley Longman Publishing Co., Inc.Google Scholar
  10. Bishop, P. O., Coombs, J. S., & Henry, G. H. (1971). Interaction effects of visual contours on the discharge frequency of simple striate neurones. Journal de Physiologie, 219, 659–687.Google Scholar
  11. Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002). Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. Journal of Neurophysiology, 88, 2530–2546.CrossRefPubMedGoogle Scholar
  12. Chen, Y., Geisler, W. S., & Seidemann, E. (2006). Optimal decoding of correlated neural population responses in the primate visual cortex. Nature Neuroscience, 9, 1412–1420.CrossRefPubMedGoogle Scholar
  13. Chisum, H. J., Mooser, F., & Fitzpatrick, D. (2003). Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. The Journal of Neuroscience, 23, 2947–2960.PubMedGoogle Scholar
  14. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9, 179–194.CrossRefPubMedGoogle Scholar
  15. Dan, Y., Atick, J. J., & Reid, R. C. (1996). Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. The Journal of Neuroscience, 16, 3351–3362.PubMedGoogle Scholar
  16. DeAngelis, G. C., Freeman, R. D., & Ohzawa, I. (1994). Length and width tuning of neurons in the cat’s primary visual cortex. Journal of Neurophysiology, 71, 347–374.PubMedGoogle Scholar
  17. Ecker, A. S., Berens, P., Keliris, G. A., Bethge, M., Logothetis, N. K., & Tolias, A. S. (2010). Decorrelated neuronal firing in cortical microcircuits. Science, 327, 584–587.CrossRefPubMedGoogle Scholar
  18. Ejima, Y., & Takahashi, S. (1985). Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings. Vision Research, 25, 1223–1232.CrossRefPubMedGoogle Scholar
  19. Fairhall, A. L., Lewen, G. D., Bialek, W., & de Ruyter Van Steveninck, R. R. (2001). Efficiency and ambiguity in an adaptive neural code. Nature, 412, 787–792.CrossRefPubMedGoogle Scholar
  20. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.CrossRefPubMedGoogle Scholar
  21. Franco, L., Rolls, E. T., Aggelopoulos, N. C., & Jerez, J. M. (2007). Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex. Biological Cybernetics, 96, 547–560.CrossRefPubMedGoogle Scholar
  22. Földiák, P. (2003). Sparse coding in the primate cortex. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 1064–1067). Cambridge: The MIT Press.Google Scholar
  23. Gawne, T. J., & Richmond, B. J. (1993). How independent are the messages carried by adjacent inferior temporal cortical neurons? The Journal of Neuroscience, 13, 2758–2771.PubMedGoogle Scholar
  24. Geisler, W. S., Perry, J. S., Super, B. J., & Gallogly, D. P. (2001). Edge co-occurrence in natural images predicts contour grouping performance. Vision Research, 41, 711–724.CrossRefPubMedGoogle Scholar
  25. Goense, J. B., & Logothetis, N. K. (2008). Neurophysiology of the BOLD fMRI signal in awake monkeys. Current Biology, 18, 631–640.CrossRefPubMedGoogle Scholar
  26. Grinvald, A., Lieke, E. E., Frostig, R. D., & Hildesheim, R. (1994). Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. The Journal of Neuroscience, 14, 2545–2568.PubMedGoogle Scholar
  27. Guo, K., Robertson, R. G., Mahmoodi, S., & Young, M. P. (2005). Centre-surround interactions in response to natural scene stimulation in the primary visual cortex. The European Journal of Neuroscience, 21, 536–548.CrossRefPubMedGoogle Scholar
  28. Harrison, L. M., Stephan, K. E., Rees, G., & Friston, K. J. (2007). Extra-classical receptive field effects measured in striate cortex with fMRI. Neuroimage, 34, 1199–1208.CrossRefPubMedGoogle Scholar
  29. Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293, 2425–2430.CrossRefPubMedGoogle Scholar
  30. Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181–197.CrossRefPubMedGoogle Scholar
  31. Hegdé, J., & Van Essen, D. C. (2000). Selectivity for complex shapes in primate visual area V2. Journal of Neuroscience, 20, RC61.PubMedGoogle Scholar
  32. Henriksson, L., Hyvärinen, A., & Vanni, S. (2009). Representation of cross-frequency spatial phase relationships in human visual cortex. The Journal of Neuroscience, 29, 14342–14351.CrossRefPubMedGoogle Scholar
  33. Hyvärinen, A., & Hoyer, P. O. (2001). A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Research, 41, 2413–2423.CrossRefPubMedGoogle Scholar
  34. Hyvärinen, A., Hurri, J., & Hoyer, P. O. (2009). Natural image statistics: A Probabilistic approach to early computational vision. London: Springer.Google Scholar
  35. Ichida, J. M., Schwabe, L., Bressloff, P. C., & Angelucci, A. (2007). Response facilitation from the “suppressive” receptive field surround of macaque V1 neurons. Journal of Neurophysiology, 98, 2168–2181.CrossRefPubMedGoogle Scholar
  36. Kapadia, M. K., Ito, M., Gilbert, C. D., & Westheimer, G. (1995). Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron, 15, 843–856.CrossRefPubMedGoogle Scholar
  37. Kastner, S., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1998). Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science, 282, 108–111.CrossRefPubMedGoogle Scholar
  38. Kastner, S., De Weerd, P., Pinsk, M. A., Elizondo, M. I., Desimone, R., & Ungerleider, L. G. (2001). Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. Journal of Neurophysiology, 86, 1398–1411.PubMedGoogle Scholar
  39. Kay, K. N., Naselaris, T., Prenger, R. J., & Gallant, J. L. (2008). Identifying natural images from human brain activity. Nature, 452, 352–355.CrossRefPubMedGoogle Scholar
  40. Kinoshita, M., Gilbert, C. D., & Das, A. (2009). Optical imaging of contextual interactions in V1 of the behaving monkey. Journal of Neurophysiology, 102, 1930–1944.CrossRefPubMedGoogle Scholar
  41. Knierim, J. J., & Van Essen, D. C. (1992). Neuronal responses to static texture patters in area V1 of the alert macaque monkey. Journal of Neurophysiology, 67, 961–980.PubMedGoogle Scholar
  42. Kouh, M., & Poggio, T. (2008). A canonical neural circuit for cortical nonlinear operations. Neural Computation, 20, 1427–1451.CrossRefPubMedGoogle Scholar
  43. Larsson, J., Landy, M. S., & Heeger, D. J. (2006). Orientation-selective adaptation to first- and second-order patterns in human visual cortex. Journal of Neurophysiology, 95, 862–881.CrossRefPubMedGoogle Scholar
  44. Latham, P. E., & Nirenberg, S. (2005). Synergy, redundancy, and independence in population codes, revisited. The Journal of Neuroscience, 25, 5195–5206.CrossRefPubMedGoogle Scholar
  45. Laughlin, S. B., & Sejnowski, T. J. (2003). Communication in neuronal networks. Science, 301, 1870–1874.CrossRefPubMedGoogle Scholar
  46. Levitt, J. B., & Lund, J. S. (1997). Contrast dependence of contextual effects in primate visual cortex. Nature, 387, 73–76.CrossRefPubMedGoogle Scholar
  47. Levy, W. B., & Baxter, R. A. (1996). Energy efficient neural codes. Neural Computation, 8, 531–543.CrossRefPubMedGoogle Scholar
  48. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150–157.CrossRefPubMedGoogle Scholar
  49. Maffei, L., & Fiorentini, A. (1976). The unresponsive regions of visual cortical receptive fields. Vision Research, 16, 1131–1139.CrossRefPubMedGoogle Scholar
  50. Miller, E. K., Gochin, P. M., & Gross, C. G. (1993). Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque by addition of a second stimulus. Brain Research, 616, 25–29.CrossRefPubMedGoogle Scholar
  51. Missal, M., Vogels, R., Li, C. Y., & Orban, G. A. (1999). Shape interactions in macaque inferior temporal neurons. Journal of Neurophysiology, 82, 131–142.PubMedGoogle Scholar
  52. Murayama, Y., Bießmann, F., Meinecke, F. C., Muller, K. R., Augath, M., Oeltermann, A., et al. (2010). Relationship between neural and hemodynamic signals during spontaneous activity studied with temporal kernel CCA Magn Reson Imaging. http://dx.doi.org/ 10.1016/j.mri.2009.12.016
  53. Nurminen, L., Kilpeläinen, M., Laurinen, P., & Vanni, S. (2009). Area summation in human visual system: psychophysics, fMRI, and modeling. Journal of Neurophysiology, 102, 2900–2909.CrossRefPubMedGoogle Scholar
  54. Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609.CrossRefPubMedGoogle Scholar
  55. Olshausen, B. A., & Field, D. J. (2004). Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14, 481–487.CrossRefPubMedGoogle Scholar
  56. Ozeki, H., Finn, I. M., Schaffer, E. S., Miller, K. D., & Ferster, D. (2009). Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron, 62, 578–592.CrossRefPubMedGoogle Scholar
  57. Pihlaja, M., Henriksson, L., James, A. C., & Vanni, S. (2008). Quantitative multifocal fMRI shows active suppression in human V1. Human Brain Mapping, 29, 1001–1014.CrossRefPubMedGoogle Scholar
  58. Polat, U., & Sagi, D. (1993). Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments. Vision Research, 33, 993–999.CrossRefPubMedGoogle Scholar
  59. Polat, U., Mizobe, K., Pettet, M. W., Kasamatsu, T., & Norcia, A. M. (1998). Collinear stimuli regulate visual responses depending on cell’s contrast threshold. Nature, 391, 580–584.CrossRefPubMedGoogle Scholar
  60. Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79–87.CrossRefPubMedGoogle Scholar
  61. Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., et al. (2010). The asynchronous state in cortical circuits. Science, 327, 587–590.CrossRefPubMedGoogle Scholar
  62. Sayres, R., & Grill-Spector, K. (2008). Relating retinotopic and object-selective responses in human lateral occipital cortex. Journal of Neurophysiology, 100, 249–267.CrossRefPubMedGoogle Scholar
  63. Sceniak, M. P., Ringach, D. L., Hawken, M. J., & Shapley, R. (1999). Contrast’s effect on spatial summation by macaque V1 neurons. Nature Neuroscience, 2, 733–739.CrossRefPubMedGoogle Scholar
  64. Sceniak, M. P., Hawken, M. J., & Shapley, R. (2001). Visual spatial characterization of macaque V1 neurons. Journal of Neurophysiology, 85, 1873–1887.PubMedGoogle Scholar
  65. Schwabe, L., & Obermayer, K. (2005). Adaptivity of tuning functions in a generic recurrent network model of a cortical hypercolumn. The Journal of Neuroscience, 25, 3323–3332.CrossRefPubMedGoogle Scholar
  66. Schwabe, L., Obermayer, K., Angelucci, A., & Bressloff, P. C. (2006). The role of feedback in shaping the extra-classical receptive field of cortical neurons: a recurrent network model. The Journal of Neuroscience, 26, 9117–9129.CrossRefPubMedGoogle Scholar
  67. Schwabe, L., Ichida, J. M., Shushruth, S., Mangapathy, P., & Angelucci, A. (2010). Contrast-dependence of surround suppression in Macaque V1: Experimental testing of a recurrent network model. Neuroimage. http://dx.doi.org/ 10.1016/j.neuroimage.2010.01.032
  68. Schwartz, O., Sejnowski, T. J., & Dayan, P. (2006). Soft mixer assignment in a hierarchical generative model of natural scene statistics. Neural Computation, 18, 2680–2718.CrossRefPubMedGoogle Scholar
  69. Schwartz, O., Sejnowski, T. J., & Dayan, P. (2009). Perceptual organization in the tilt illusion. Journal of Vision, 9(19), 1–20.PubMedGoogle Scholar
  70. Seghier, M., Dojat, M., Delon-Martin, C., Rubin, C., Warnking, J., Segebarth, C., et al. (2000). Moving illusory contours activate primary visual cortex: an fMRI study. Cerebral Cortex, 10, 663–670.CrossRefPubMedGoogle Scholar
  71. Shadlen, M. N., & Newsome, W. T. (1994). Noise, neural codes and cortical organization. Current Opinion in Neurobiology, 4, 569–579.CrossRefPubMedGoogle Scholar
  72. Shannon, C. E. (1948). A Mathematical theory of communication. The Bell System Technical Journal, 27, 379–423.Google Scholar
  73. Sharpee, T. O., & Victor, J. D. (2009). Contextual modulation of V1 receptive fields depends on their spatial symmetry. Journal of Computational Neuroscience, 26, 203–218.CrossRefPubMedGoogle Scholar
  74. Shmuel, A., Chaimow, D., Raddatz, G., Ugurbil, K., & Yacoub, E. (2010). Mechanisms underlying decoding at 7 T: Ocular dominance columns, broad structures, and macroscopic blood vessels in V1 convey information on the stimulated eye. Neuroimage, 49, 1943–1948.CrossRefGoogle Scholar
  75. Shulman, R. G., Hyder, F., & Rothman, D. L. (2001). Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proceedings of the National Academy of Sciences of the United States of America, 98, 6417–6422.CrossRefPubMedGoogle Scholar
  76. Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience, 24, 1193–1216.CrossRefPubMedGoogle Scholar
  77. Spratling, M. W. (2010). Predictive coding as a model of response properties in cortical area v1. The Journal of Neuroscience, 30, 3531–3543.CrossRefPubMedGoogle Scholar
  78. Sundberg, K. A., Mitchell, J. F., & Reynolds, J. H. (2009). Spatial attention modulates center-surround interactions in macaque visual area v4. Neuron, 61, 952–963.CrossRefPubMedGoogle Scholar
  79. Tajima, S., Watanabe, M., Imai, C., Ueno, K., Asamizuya, T., Sun, P., et al. (2010). Opposing effects of contextual surround in human early visual cortex revealed by functional magnetic resonance imaging with continuously modulated visual stimuli. The Journal of Neuroscience, 30, 3264–3270.CrossRefPubMedGoogle Scholar
  80. Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J., & McNaughton, B. L. (1997). Paradoxical effects of external modulation of inhibitory interneurons. The Journal of Neuroscience, 17, 4382–4388.PubMedGoogle Scholar
  81. Vanni, S., Dojat, M., Warnking, J., Delon-Martin, C., Segebarth, C., & Bullier, J. (2004). Timing of interactions across the visual field in the human cortex. Neuroimage, 21, 818–828.CrossRefPubMedGoogle Scholar
  82. Williams, A. L., Singh, K. D., & Smith, A. T. (2003). Surround modulation measured with functional MRI in the human visual cortex. Journal of Neurophysiology, 89, 525–533.CrossRefPubMedGoogle Scholar
  83. Willmore, B., & Tolhurst, D. J. (2001). Characterizing the sparseness of neural codes. Network, 12, 255–270.PubMedGoogle Scholar
  84. Vinje, W. E., & Gallant, J. L. (2000). Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 287, 1273–1276.CrossRefPubMedGoogle Scholar
  85. Vinje, W. E., & Gallant, J. L. (2002). Natural stimulation of the nonclassical receptive field increases information transmission efficiency in V1. The Journal of Neuroscience, 22, 2904–2915.PubMedGoogle Scholar
  86. Xing, J., & Heeger, D. J. (2001). Measurement and modeling of center-surround suppression and enhancement. Vision Research, 41, 571–583.CrossRefPubMedGoogle Scholar
  87. Zenger-Landolt, B., & Heeger, D. J. (2003). Response suppression in v1 agrees with psychophysics of surround masking. The Journal of Neuroscience, 23, 6884–6893.PubMedGoogle Scholar
  88. Zoccolan, D., Cox, D. D., & DiCarlo, J. J. (2005). Multiple object response normalization in monkey inferotemporal cortex. The Journal of Neuroscience, 25, 8150–8164.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Brain Research Unit, Low Temperature Laboratory and Advanced Magnetic Imaging CentreAalto University School of Science and TechnologyEspooFinland
  2. 2.Department of PsychologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations