Journal of Computational Neuroscience

, Volume 29, Issue 1–2, pp 49–62 | Cite as

Methods for predicting cortical UP and DOWN states from the phase of deep layer local field potentials

  • Aman B. SaleemEmail author
  • Paul Chadderton
  • John Apergis-Schoute
  • Kenneth D. Harris
  • Simon R. Schultz


During anesthesia, slow-wave sleep and quiet wakefulness, neuronal membrane potentials collectively switch between de- and hyperpolarized levels, the cortical UP and DOWN states. Previous studies have shown that these cortical UP/DOWN states affect the excitability of individual neurons in response to sensory stimuli, indicating that a significant amount of the trial-to-trial variability in neuronal responses can be attributed to ongoing fluctuations in network activity. However, as intracellular recordings are frequently not available, it is important to be able to estimate their occurrence purely from extracellular data. Here, we combine in vivo whole cell recordings from single neurons with multi-site extracellular microelectrode recordings, to quantify the performance of various approaches to predicting UP/DOWN states from the deep-layer local field potential (LFP). We find that UP/DOWN states in deep cortical layers of rat primary auditory cortex (A1) are predictable from the phase of LFP at low frequencies (< 4 Hz), and that the likelihood of a given state varies sinusoidally with the phase of LFP at these frequencies. We introduce a novel method of detecting cortical state by combining information concerning the phase of the LFP and ongoing multi-unit activity.


UP and DOWN states LFP State dependent coding Neural coding Spontaneous activity Neural oscillations 



This research was funded by the Gatsby Charitable Foundation (grant GAT2830 to SRS), NIH (grant MH073245 to KDH), an NSF International Fellowship (IRFP-NSF 0804305 to JAS), and a Marie Curie Outgoing International Fellowship (PC).

Supplementary material

10827_2010_228_Fig8_ESM.gif (34 kb)
Suppl. Fig. S1

(GIF 33 kb)

10827_2010_228_Fig1_ESM.eps (1.1 mb)
High Resolution Image (EPS 1169 kb)
10827_2010_228_MOESM2_ESM.doc (40 kb)
Suppl. Material (DOC 40 kb)


  1. Anderson, J., Lampl, I., Reichova, I., Carandini, M., & Ferster, D. (2000). Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex. Nature Neuroscience, 3, 617–621.CrossRefPubMedGoogle Scholar
  2. Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996). Dynamics of ongoing activity: Explanation of large variability in evoked cortical responses. Science, 273, 1868–1871.CrossRefPubMedGoogle Scholar
  3. Azouz, R., & Gray, C. M. (1999). Cellular mechanisms contributing to response variability of cortical neurons in vivo. Journal of Neuroscience, 19, 2209–2223.PubMedGoogle Scholar
  4. Bartho, P., Hirase, H., Monconduit, L., Zugaro, M., Harris, K. D., & Buzsaki, G. (2004). Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. Journal of Neurophysiology, 92, 600–608.CrossRefPubMedGoogle Scholar
  5. Blanche, T. J., Spacek, M. A., Hetke, J. F., & Swindale, N. V. (2005). Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording. Journal of Neurophysiology, 93, 2987–3000.CrossRefPubMedGoogle Scholar
  6. Carandini, M. (2004). Amplification of trial-to-trial response variability by neurons in visual cortex. PLoS Biology, 2(9), e264.CrossRefPubMedGoogle Scholar
  7. Compte, A., Sanchez-Vives, M. V., McCormick, D. A., & Wang, X. J. (2003). Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89, 2707–2725.CrossRefPubMedGoogle Scholar
  8. Contreras, D., & Steriade, M. (1995). Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. Journal of Neuroscience, 15, 604–622.PubMedGoogle Scholar
  9. Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network UP states in the neocortex. Nature, 423, 283–288.CrossRefPubMedGoogle Scholar
  10. Cowan, R. L., & Wilson, C. J. (1994). Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. Journal of Neurophysiology, 71, 17–32.PubMedGoogle Scholar
  11. Creutzfeldt, O. D., Watanabe, S., & Lux, H. D. (1966a). Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimuluation. Electroencephalography and clinical neurophysiology, 20(1), 1–18.CrossRefPubMedGoogle Scholar
  12. Creutzfeldt, O. D., Watanabe, S., & Lux, H. D. (1966b). Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalography and clinical neurophysiology, 20(1), 19–37.CrossRefPubMedGoogle Scholar
  13. Crochet, C., & Peterson, C. C. H. (2006). Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nature Neuroscience, 9, 608–610.CrossRefPubMedGoogle Scholar
  14. Curto, C., Sakata, S., Marguet, S., Itskov, V., & Harris, K. D. (2009). A simple model of cortical dynamics explains variability and state-dependence of sensory responses in urethane-anesthetized auditory cortex. Journal of Neuroscience, 29(34), 10600–10612.CrossRefPubMedGoogle Scholar
  15. Destexhe, A. (2009). Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. Journal of Computational Neuroscience, 27(3), 493–506.CrossRefPubMedGoogle Scholar
  16. Destexhe, A., Contreras, D., & Steriade, M. (1999). Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. Journal of Neuroscience, 19, 4595–4608.PubMedGoogle Scholar
  17. Destexhe, A., Hughes, S. W., Rudolph, M., & Crunelli, V. (2007). Are corticothalamic ‘up’ states fragments of wakefulness? Trends in Neurosciences, 30(7), 334–342.CrossRefPubMedGoogle Scholar
  18. Eccles, J. C. (1951). Interpretation of action potentials evoked in the cerebral cortex. Electroencephalography and clinical neurophysiology, 3(4), 449–464.CrossRefPubMedGoogle Scholar
  19. Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.Google Scholar
  20. Haider, B., Duque, A., Hasenstaub, A. R., & McCormick, D. A. (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. Journal of Neuroscience, 26, 4535–4545.CrossRefPubMedGoogle Scholar
  21. Haider, B., Duque, A., Hasenstaub, A. R., Yu, Y., & McCormick, D. A. (2007). Enhancement of visual responsiveness by spontaneous local network activity in vivo. Journal of Neurophysiology, 97, 4186–4202.CrossRefPubMedGoogle Scholar
  22. Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H., & Buzsaki, G. (2000). Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. Journal of Neurophysiology, 84(1), 401–414.PubMedGoogle Scholar
  23. Hasenstaub, A. R., Sachdev, R. N., & McCormick, D. A. (2007). State changes rapidly modulate cortical neuronal responsiveness. Journal of Neuroscience, 27, 9607–9622.CrossRefPubMedGoogle Scholar
  24. Hoffman, K. L., Battaglia, F. P., Harris, K. D., Maclean, J. N., Marshall, L., & Mehta, M. R. (2007). The upshot of up states in the neocortex: from slow oscillations to memory formation. Journal of Neuroscience, 27(44), 11838–11841.CrossRefPubMedGoogle Scholar
  25. Holcman, D., & Tsodyks, M. (2006). The emergence of Up and Down states in cortical networks. PLoS Computational Biology, 2(3), e23.CrossRefPubMedGoogle Scholar
  26. Ji, D., & Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10(1), 100–107.CrossRefPubMedGoogle Scholar
  27. Kandel, A., & Buzsaki, G. (1997). Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. Journal of Neuroscience, 17, 6783–6797.PubMedGoogle Scholar
  28. Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D., & Carandini, M. (2009). Local origin of field potentials in visual cortex. Neuron, 61(1), 35–41.CrossRefPubMedGoogle Scholar
  29. Kayser, C., Montemurro, M. A., Logothesis, N. K., & Panzeri, S. (2009). Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron, 61(4), 597–608.CrossRefPubMedGoogle Scholar
  30. Kisley, M. A., & Gerstein, G. L. (1999). Trail-to-trail variability and state-dependent modulation of auditory-evoked responses in cortex. Journal of Neuroscience, 19(23), 10451–10460.PubMedGoogle Scholar
  31. Lampl, I., Reichova, I., & Ferster, D. (1999). Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron, 22(2), 361–374.CrossRefPubMedGoogle Scholar
  32. Li, C. T., Poo, M., & Yang, D. (2009). Burst spiking of a single cortical neuron modifies global brain state. Science, 324, 643–646.CrossRefPubMedGoogle Scholar
  33. Luczak, A., Bartho, P., Marguet, S. L., Buzsaki, G., & Harris, K. D. (2007). Sequential structure of neocortical spontaneous activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 347–352.CrossRefPubMedGoogle Scholar
  34. Luczak, A., Bartho, P., & Harris, K. D. (2009). Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron, 62(3), 1–13.CrossRefGoogle Scholar
  35. Margrie, T. W., Brecht, M., & Sakmann, B. (2002). In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Archive European Journal of Physiology, 444(4), 491–498.CrossRefGoogle Scholar
  36. Maynard, E. M., Nordhausen, C. T., & Normann, R. A. (1997). The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroencephalography and Clinical Neurophysiology, 102(3), 228–239.CrossRefPubMedGoogle Scholar
  37. Montemurro, M. A., Rasch, M. J., Murayama, Y., Logothetis, N. K., & Panzeri, S. (2008). Phase-of-firing coding of natural visual stimuli in primary visual cortex. Current Biology, 18(5), 375–380.CrossRefPubMedGoogle Scholar
  38. Parga, N., & Abbott, L. F. (2007). Network model of spontaneous activity exhibiting synchronous transitions between up and down states. Front. Neurosci., 1(1), 57–66.CrossRefPubMedGoogle Scholar
  39. Paxinos, G., & Watson, C. (2004). The rat brain in stereotaxic coordinates—the new coronal set (5th ed.). New York: Academic.Google Scholar
  40. Petersen, C. C., Hahn, T. T., Mehta, M., Grinvald, A., & Sakmann, B. (2003). Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proceedings of the National Academy of Sciences of the United States of America, 100, 13638–13643.CrossRefPubMedGoogle Scholar
  41. Poulet, J. F., & Petersen, C. C. (2008). Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature, 454, 881–885.CrossRefPubMedGoogle Scholar
  42. Quiroga, R. Q., Nadasdy, Z., & Ben-Shaul, Y. (2004). Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Computation, 16(8), 1661–1687.CrossRefPubMedGoogle Scholar
  43. Reig, R., Gallego, R., Nowak, L. G., & Sanchez-Vives, M. V. (2006). Impact of cortical network Activity on short-term synaptic depression. Cerebral Cortex, 16(5), 688–695.CrossRefPubMedGoogle Scholar
  44. Renart, A., de la Rocha, J., Hollender, L., Parga, N., Reyes, A., & Harris, K. D. (2010). The asynchronous state in cortical circuits. Science, 327(5965), 587–590.CrossRefPubMedGoogle Scholar
  45. Sachdev, R. N., Ebner, F. F., & Wilson, C. J. (2004). Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. Journal of Neurophysiology, 92, 3511–3521.CrossRefPubMedGoogle Scholar
  46. Sakata, S., & Harris, K. D. (2009). Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron, 64(3), 404–418.CrossRefPubMedGoogle Scholar
  47. Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3, 1027–1034.CrossRefPubMedGoogle Scholar
  48. Shu, Y., Hasenstaub, A., & McCormick, D. A. (2003). Turning on and off recurrent balanced cortical activity. Nature, 423, 288–293.CrossRefPubMedGoogle Scholar
  49. Steriade, M., Nunez, A., & Amzica, F. (1993). A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. Journal of Neuroscience, 13(8), 3252–3265.PubMedGoogle Scholar
  50. Steriade, M., Timofeev, I., & Grenier, F. (2001). Natural waking and sleep states: a view from inside neocortical neurons. Journal of Neurophysiology, 85, 1969–1985.PubMedGoogle Scholar
  51. Timofeev, I., Grenier, F., & Steriade, M. (2001). Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proceedings of the National Academy Sciences of the United States of America, 98(4), 1924–29.CrossRefGoogle Scholar
  52. Vyazovskiy, V. V., Olcese, U., Lazimy, Y. M., Faraguna, U., Esser, S. K., Williams, J. C., et al. (2009). Cortical firing and sleep homeostasis. Neuron, 63(6), 865–878.CrossRefPubMedGoogle Scholar
  53. Wilson, C. J., & Groves, P. M. (1981). Spontaneous firing patterns of identified spiny neurons in the rat neostriatum. Brain Research, 220(1), 67–80.CrossRefPubMedGoogle Scholar
  54. Wilson, C. J., & Kawaguchi, Y. (1996). The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. Journal of Neuroscience, 16, 2397–2410.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Aman B. Saleem
    • 1
    Email author
  • Paul Chadderton
    • 2
    • 3
  • John Apergis-Schoute
    • 1
  • Kenneth D. Harris
    • 1
    • 3
  • Simon R. Schultz
    • 1
  1. 1.Department of BioengineeringImperial College LondonLondonUK
  2. 2.UCL Ear InstituteLondonUK
  3. 3.Center for Molecular and Behavioral NeuroscienceRutgers UniversityNewarkUSA

Personalised recommendations