Advertisement

Journal of Computational Neuroscience

, Volume 28, Issue 3, pp 443–458 | Cite as

Mixed mode oscillations as a mechanism for pseudo-plateau bursting

  • Theodore Vo
  • Richard Bertram
  • Joel Tabak
  • Martin Wechselberger
Article

Abstract

We combine bifurcation analysis with the theory of canard-induced mixed mode oscillations to investigate the dynamics of a novel form of bursting. This bursting oscillation, which arises from a model of the electrical activity of a pituitary cell, is characterized by small impulses or spikes riding on top of an elevated voltage plateau. Oscillations with these characteristics have been called “pseudo-plateau bursting”. Unlike standard bursting, the subsystem of fast variables does not possess a stable branch of periodic spiking solutions, and in the case studied here the standard fast/slow analysis provides little information about the underlying dynamics. We demonstrate that the bursting is actually a canard-induced mixed mode oscillation, and use canard theory to characterize the dynamics of the oscillation. We also use bifurcation analysis of the full system of equations to extend the results of the singular analysis to the physiological regime. This demonstrates that the combination of these two analysis techniques can be a powerful tool for understanding the pseudo-plateau bursting oscillations that arise in electrically excitable pituitary cells and isolated pancreatic β-cells.

Keywords

Pseudo-plateau burst Pituitary cell Conductance-based model Mixed mode oscillation Canard Slow-fast system Bifurcation analysis 

Notes

Acknowledgements

Financial support was provided by the National Institutes of Health grant DA 43200 and National Science Foundation grant DMS 0917664 to RB. MW thanks the Vienna University of Technology and the Mathematical Biosciences Institute at Ohio State University for sabbatical support.

References

  1. Benoit, E. (1983). Syst‘emes lents-rapides dans r3 et leur canards. Asterisque, 109–110, 159–191.Google Scholar
  2. Brons, M., Kaper, T. J., & Rotstein, H. G. (2008). Introduction to focus issue: mixed mode oscillations: Experiment, computation, and analysis. Chaos, 18, 015101.CrossRefPubMedGoogle Scholar
  3. Brons, M., Krupa, M., & Wechselberger, M. (2006). Mixed mode oscillations due to the generalized canard phenomenon. Fields Institute Communications, 49, 39–63.Google Scholar
  4. Desroches, M., Krauskopf, B., Osinga, H. M. (2008). Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh–Nagumo system. Chaos, 18, 015107.CrossRefPubMedGoogle Scholar
  5. Drover, J., et al. (2005). Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies. SIAM Journal on Applied Mathematics, 65, 69–92.CrossRefGoogle Scholar
  6. Erchova, I., & McGonigle, D. J. (2008). Rhythms of the brain: An examination of mixed mode oscillation approaches to the analysis of neurophysiological data. Chaos, 18, 015115.CrossRefPubMedGoogle Scholar
  7. Ermentrout, G. B. (2002). Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. Philadelphia: SIAM Books.Google Scholar
  8. Ermentrout, G. B., & Wechselberger, M. (2009). Canards, clusters and synchronization in a weakly coupled interneuron model. SIAM Journal On Applied Dynamical Systems, 8, 253–278.CrossRefGoogle Scholar
  9. Fenichel, N. (1979). Geometric singular perturbation theory. Journal of Differential Equations, 31, 53–98.CrossRefGoogle Scholar
  10. Van Goor, F. V., et al. (2001). Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. Journal of Biological Chemistry, 276, 33840–33846.CrossRefPubMedGoogle Scholar
  11. Guckenheimer, J. (2008). Singular Hopf bifurcation in systems with two slow variables. SIAM Journal On Applied Dynamical Systems, 7, 1355–1377.CrossRefGoogle Scholar
  12. Guckenheimer, J., et al. (1997). Bifurcation, bursting, and spike frequency adaptation. Journal of Computational Neuroscience, 4, 257–277.CrossRefPubMedGoogle Scholar
  13. Jones, C. K. R. T. (1995). Geometric singular perturbation theory. In R. Johnson (Ed.), Dynamical systems. Lecture notes in mathematics (Vol. 1609, pp. 44–120). New York: Springer.Google Scholar
  14. Kinard, T. A., et al. (1999). Modulation of the bursting properties of single mouse pancreatic β-cells by artificial conductances. Biophysical Journal, 76(3), 1423–1435.CrossRefPubMedGoogle Scholar
  15. Krupa, M., et al. (2008). Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. Chaos, 18, 015106.CrossRefPubMedGoogle Scholar
  16. Krupa, M., & Wechselberger, M. (2010). Local analysis near a folded saddle-node singularity. Journal of Differential Equations. doi: 10.1016/j.jde.2010.02.006.Google Scholar
  17. Kuryshev, Y. A., Childs, G. V., & Ritchie, A. K. (1996). Corticotropin-releasing hormone stimulates Ca2 +  entry through L- and P-type Ca2 +  channels in rat corticotropes. Endocrinology, 137, 2269–2277.CrossRefPubMedGoogle Scholar
  18. LeBeau, A. P., et al. (1998). Analysis of a reduced model of corticotroph action potentials. Journal of Theoretical Biology, 192, 319–339.CrossRefPubMedGoogle Scholar
  19. Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.CrossRefPubMedGoogle Scholar
  20. Rinzel, J. (1987). A formal classification of bursting mechanisms in excitable systems. In E. Teramoto, & M. Yamaguti (Eds.), Mathematical topics in population biology, morphogenesis and neurosciences. Lecture notes in biomathematics (Vol. 71, pp. 267–281). Berlin: Springer.Google Scholar
  21. Rinzel, J., & Ermentrout, G. B. (1998). Analysis of neural excitability and oscillations. In C. Koch, & I. Segev (Eds.), Methods in neuronal modeling: From synapses to networks (2nd ed., pp. 251–292). Cambridge: MIT.Google Scholar
  22. Rotstein, H., Wechselberger, M., & Kopell, N. (2008). Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model. SIAM Journal of Dynamic Systems, 7, 1582–1611.CrossRefGoogle Scholar
  23. Rubin, J., & Wechselberger, M. (2007). Giant squid-hidden canard: The 3D geometry of the Hodgkin–Huxley model. Biological Cybernetics, 97, 5–32.CrossRefPubMedGoogle Scholar
  24. Shorten, P. R., et al. (2000). CRH-induced electrical activity and calcium signalling in pituitary corticotrophs. Journal of Theoretical Biology, 206, 395–405.CrossRefPubMedGoogle Scholar
  25. Stern, J. V. (2008). Resetting behavior in a model of bursting in secretory pituitary cells: Distinguishing plateaus from pseudo-plateaus. Bulletin of Mathematical Biology, 70, 68–88.CrossRefPubMedGoogle Scholar
  26. Szmolyan, P., & Wechselberger, M. (2001). Canards in ℝ3. Journal of Differential Equations, 177, 419–453.CrossRefGoogle Scholar
  27. Szmolyan, P., & Wechselberger, M. (2004). Relaxation oscillations in ℝ3. Journal of Differential Equations, 200, 69–104.CrossRefGoogle Scholar
  28. Tabak, J., et al. (2007). Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents. Journal of Computational Neuroscience, 22, 211–222.CrossRefPubMedGoogle Scholar
  29. Toporikova, N., et al. (2008). A-type K +  current can act as a trigger for bursting in the absence of a slow variable. Neural Computation, 20, 436–451.CrossRefPubMedGoogle Scholar
  30. Tsaneva-Atanasova, K., et al. (2007). Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs: Experiments and theory. Journal of Neurophysiology, 98, 131–144.CrossRefPubMedGoogle Scholar
  31. Wechselberger, M., (2005). Existence and bifurcation of canards in ℝ3 in the case of a folded node. SIAM Journal of Dynamic Systems, 4, 101–139.CrossRefGoogle Scholar
  32. Zhang, M., et al. (2003). The Ca2 +  dynamics of isolated mouse β-cells and islets: Implications for mathematical models. Biophysical Journal, 84, 2852–2870.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Theodore Vo
    • 1
  • Richard Bertram
    • 2
  • Joel Tabak
    • 3
  • Martin Wechselberger
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of SydneySydneyAustralia
  2. 2.Department of Mathematics and Programs in Neuroscience and Molecular BiophysicsFlorida State UniversityTallahasseeUSA
  3. 3.Department of Biological ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations