Advertisement

Journal of Computational Neuroscience

, Volume 28, Issue 3, pp 405–424 | Cite as

Encoding and decoding amplitude-modulated cochlear implant stimuli—a point process analysis

  • Joshua H. GoldwynEmail author
  • Eric Shea-Brown
  • Jay T. Rubinstein
Article

Abstract

Cochlear implant speech processors stimulate the auditory nerve by delivering amplitude-modulated electrical pulse trains to intracochlear electrodes. Studying how auditory nerve cells encode modulation information is of fundamental importance, therefore, to understanding cochlear implant function and improving speech perception in cochlear implant users. In this paper, we analyze simulated responses of the auditory nerve to amplitude-modulated cochlear implant stimuli using a point process model. First, we quantify the information encoded in the spike trains by testing an ideal observer’s ability to detect amplitude modulation in a two-alternative forced-choice task. We vary the amount of information available to the observer to probe how spike timing and averaged firing rate encode modulation. Second, we construct a neural decoding method that predicts several qualitative trends observed in psychophysical tests of amplitude modulation detection in cochlear implant listeners. We find that modulation information is primarily available in the sequence of spike times. The performance of an ideal observer, however, is inconsistent with observed trends in psychophysical data. Using a neural decoding method that jitters spike times to degrade its temporal resolution and then computes a common measure of phase locking from spike trains of a heterogeneous population of model nerve cells, we predict the correct qualitative dependence of modulation detection thresholds on modulation frequency and stimulus level. The decoder does not predict the observed loss of modulation sensitivity at high carrier pulse rates, but this framework can be applied to future models that better represent auditory nerve responses to high carrier pulse rate stimuli. The supplemental material of this article contains the article’s data in an active, re-usable format.

Keywords

Point process model Cochlear implant Auditory nerve Amplitude modulation Neural coding 

Notes

Acknowledgements

The authors thank four anonymous reviewers for providing thoughtful critiques that have led to improvements of this manuscript. The authors also thank Dr. R.V. Shannon and Dr. J.J. Galvin III for granting permission to reproduce their data in Fig. 3. This research has been supported by a National Science Foundation VIGRE Fellowship (J.H.G.), National Institute on Deafness and Other Communication Disorders grants 1F31DC010306-01 (J.H.G.) and R01 DC007525 (J.T.R.), and a Burroughs-Wellcome Fund Career Award at the Scientific Interface (E.S.-B.).

References

  1. Briaire, J., & Frijns, J. (2000). Field patterns in a 3d tapered spiral model of the electrically stimulated cochlea. Hearing Research, 148, 18–30.CrossRefPubMedGoogle Scholar
  2. Bruce, I. C., Irlicht, L. S., White, M. W., O’Leary, S. J., Dynes, S., Javel, E., et al. (1999a). A stochastic model of the electrically stimulated auditory nerve: Pulse-train response. IEEE Transactions on Biomedical Engineering, 46(6), 630–637.CrossRefPubMedGoogle Scholar
  3. Bruce, I. C., White, M. W., Irlicht, L., O’Leary, S. J., & Clark, G. M. (1999b). The effects of stochastic neural activity in a model predicting intensity perception with cochlear implants: Low-rate stimulation. IEEE Transactions on Biomedical Engineering, 46(12), 1393–1404.CrossRefPubMedGoogle Scholar
  4. Bruce, I. C., White, M. W., Irlicht, L. S., O’Leary, S. J., Dynes, S., Javel, E., et al. (1999c). A stochastic model of the electrically stimulated auditory nerve: Single-pulse response. IEEE Transactions on Biomedical Engineering, 46(6), 617–629.CrossRefPubMedGoogle Scholar
  5. Bruce, I. C., Irlicht, L. S., White, M. W., O’Leary, S. J., & Clark, G. M. (2000). Renewal-process approximation of a stochastic threshold model for electrical neural stimulation. Journal of Comparative Neurology, 9(2), 119–132.Google Scholar
  6. Busby, P., Tong, Y., & Clark, G. (1993). The perception of temporal modulations by cochlear implant patients. Journal of the Acoustical Society America, 94, 124–131.CrossRefGoogle Scholar
  7. Cazals, Y., Pelizzone, M., Saudan, O., & Boex, C. (1994). Low-pass filtering in amplitude modulation detection associated with vowel and consonant identification in subjects with cochlear implants. The Journal of the Acoustical Society of America, 96, 2048–2054.CrossRefPubMedGoogle Scholar
  8. Cohen, L. (2009a). Practical model description of peripheral neural excitation in cochlear implant recipients: 1. Growth of loudness and ecap amplitude with current. Hearing Research, 247(2), 87–99.CrossRefPubMedGoogle Scholar
  9. Cohen, L. (2009b). Practical model description of peripheral neural excitation in cochlear implant recipients: 2. Spread of the effective stimulation field (esf), from ecap and fea. Hearing Research, 247(2), 100–111.CrossRefPubMedGoogle Scholar
  10. Cohen, L. (2009c). Practical model description of peripheral neural excitation in cochlear implant recipients: 3. Ecap during bursts and loudness as function of burst duration. Hearing Research, 247(2), 112–121.CrossRefPubMedGoogle Scholar
  11. Cohen, L. (2009d). Practical model description of peripheral neural excitation in cochlear implant recipients: 4. Model development at low pulse rates: General model and application to individuals. Hearing Research, 248(1–2), 15–30.CrossRefPubMedGoogle Scholar
  12. Cohen, L. (2009e). Practical model description of peripheral neural excitation in cochlear implant recipients: 5. Refractory recovery and facilitation. Hearing Research, 248(1–2), 1–14.CrossRefPubMedGoogle Scholar
  13. Daley, D., & Vere-Jones, D. (2003). An introduction to the theory of point processes. Volume I: Elementary theory and methods. Probability and its applications (2nd ed.). New York: Springer.Google Scholar
  14. Dau, T., Kollmeier, B., & Kohlrausch, A. (1997). Modeling auditory processing of amplitude modulation. i. Detection and masking with narrow-band carriers. Journal of the Acoustical Society of America, 102(5), 2892–2905.CrossRefPubMedGoogle Scholar
  15. Dicke, U., Ewert, S. D., Dau, T., & Kollmeier, B. (2007). A neural circuit transforming temporal periodicity information into a rate-based representation in the mammalian auditory system. Journal of the Acoustical Society of America, 121(1), 310–326.CrossRefPubMedGoogle Scholar
  16. Donaldson, G. S., Viemeister, N. F., & Nelson, D. A. (1997). Psychometric functions and temporal integration in electric hearing. Journal of the Acoustical Society of America, 101(6), 3706–3721.CrossRefPubMedGoogle Scholar
  17. Faes, L., Nollo, G., Ravelli, F., Ricci, L., Vescovi, M., Turatto, M., et al. (2007). Small-sample characterization of stochastic approximation staircases in forced-choice adaptive threshold estimation. Perception and Psychophysics, 69(2), 254–262.PubMedGoogle Scholar
  18. Finley, C., Wilson, B., & White, M. (1990). Models of neural responsiveness to electrical stimulation. Cochlear implants: Models of the electrically stimulated ear (pp. 55–96). Springer-Verlag.Google Scholar
  19. Frijns, J., de Snoo, S., & Schoonhoven, R. (1995). Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hearing Research, 87, 170–186.CrossRefPubMedGoogle Scholar
  20. Fu, Q. J. (2002). Temporal processing and speech recognition in cochlear implant users. NeuroReport, 13(3), 1635–1639.CrossRefPubMedGoogle Scholar
  21. Galvin, J. J., & Fu, Q. J. (2005). Effects of stimulation rate, mode and level on modulation detection by cochlear implant users. Journal of the Association for Research in Otolaryngology, 6, 269–279.CrossRefPubMedGoogle Scholar
  22. Goldberg, J., & Brown, P. (1969). Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization. Journal of Neurophysiology, 32(4), 613–636.PubMedGoogle Scholar
  23. Green, D., & Swets, J. (1966). Signal detection theory and psychophysics. New York: Wiley.Google Scholar
  24. Heinz, M., Colburn, H., & Carney, L. (2001a). Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve. Neural Computation, 13, 2273–2316.CrossRefPubMedGoogle Scholar
  25. Heinz, M., Colburn, H., & Carney, L. (2001b). Evaluating auditory performance limits: Ii. One-parameter discrimination with a random level variation. Neural Computation, 13, 2317–2339.CrossRefPubMedGoogle Scholar
  26. Hewitt, M. J., & Meddis, R. (1994). A computer model of amplitude-modulated sensitivity of single units in the inferior colliculus. Journal of the Acoustical Society of America, 95(4), 2145–2159.CrossRefPubMedGoogle Scholar
  27. Imennov, N., & Rubinstein, J. (2009). Stochastic population model for electrical stimulation of the auditory nerve. IEEE Transactions on Biomedical Engineering, 56, 2493–2501CrossRefPubMedGoogle Scholar
  28. Joris, P., Schreiner, C., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiological Reviews, 84, 541–577.CrossRefPubMedGoogle Scholar
  29. Joris, P. X., & Yin, T. C. (1992). Responses to amplitude-modulated tones in the auditory nerve of cat. Journal of the Acoustical Society of America, 91, 215–232.CrossRefPubMedGoogle Scholar
  30. Kesten, H. (1958). Accelerated stochastic approximation. The Annals of Mathematical Statistics, 29(1), 41–59.CrossRefGoogle Scholar
  31. Krishna, B., & Semple, M. (2000). Auditory temporal processing: Responses to sinusoidally amplitude-modulated tones in the inferor colliculus. Journal of Neurophysiology, 84, 255–273.PubMedGoogle Scholar
  32. Langner, G. (1997). Neural processing and representation of periodicity pitch. Acta Oto-Laryngologica, Supplement, 532, 68–76.CrossRefGoogle Scholar
  33. Litvak, L., Delgutte, B., & Eddington, D. (2001). Auditory nerve fiber responses to electric stimulation: Modulated and unmodulated pulse trains. Journal of the Acoustical Society of America, 110(1), 368–379.CrossRefPubMedGoogle Scholar
  34. McKay, C. M., & Henshall, K. R. (2010). Amplitude modulation and loudness in cochlear implantees. Journal of the Association for Research in Otolaryngology, 11(1), 101–111.CrossRefPubMedGoogle Scholar
  35. McKay, C. M., Remine, M. D., & McDermott, H. J. (2001). Loudness summation for pulsatile electrical stimulation of the cochlea: Effects of rate, electrode separation, level, and mode of stimulation. Journal of the Acoustical Society of America, 110(3), 1514–1524.CrossRefPubMedGoogle Scholar
  36. Middlebrooks, J. C. (2008a). Auditory cortex phase locking to amplitude-modulated cochlear implant pulse trains. Journal of Neurophysiology, 100, 76–91.CrossRefPubMedGoogle Scholar
  37. Middlebrooks, J. C. (2008b) Cochlear-implant high pulse rate and narrow electrode configuration impair transmission of temporal information to the auditory cortex. Journal of Neurophysiology, 100, 92–107.CrossRefPubMedGoogle Scholar
  38. Miller, C. A., Abbas, P., Robinson, B., Rubinstein, J. T., & Matsuoka, A. (1999). Electrically evoked single fiber action potentials from cat: Responses to monopolar, monophasic stimulation. Hearing Research, 130, 197–218.CrossRefPubMedGoogle Scholar
  39. Miller, C. A., Abbas, P., & Robinson, B. (2001). Response properties of the refractory auditory nerve fiber. Journal of the Association for Research in Otolaryngology, 2, 216–232.PubMedGoogle Scholar
  40. Nelson, P. C., & Carney, L. H. (2004). A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. Journal of the Acoustical Society of America, 116(4), 119–132.CrossRefGoogle Scholar
  41. Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15, 243–262.CrossRefGoogle Scholar
  42. Pfingst, B. E., Xu, L., & Thompson, C. S. (2007). Effects of carrier pulse rate and stimulation site on modulation detection by subjects with cochlear implants. Journal of the Acoustical Society of America, 121(4), 2236–2246.CrossRefPubMedGoogle Scholar
  43. Pfingst, B. E., Burkholder-Juhasz, R. A., Xu, L., & Thompson, C. S. (2008). Across-site patterns of modulation detection in listeners with cochlear implants. Journal of the Acoustical Society of America, 123(2), 1054–1062.CrossRefPubMedGoogle Scholar
  44. Pillow, J. W., Paninski, L., Uzzel, V. J., Simoncelli, E. P., & Chichilnisky, E. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25(47):11,003–11,013.CrossRefPubMedGoogle Scholar
  45. Rattay, F., & Felix, H. (2001). A model of the electrically excited human cochlear neuron i. Contribution of neural substructures to the generation and propagation of spike. Hearing Research, 153, 43–63.CrossRefPubMedGoogle Scholar
  46. Rattay, F., Leao, R., & Felix, H. (2001). A model of the electrically excited human cochlear neuron ii. Influence of the three-dimensional cochlear structure on neural excitability. Hearing Research, 153, 64–79.CrossRefPubMedGoogle Scholar
  47. Rieke, F., Warland, D., & de Ruyter van Steveninck, R. (1999). Spike: Exploring the neural code. Cambridge, MA: MIT Press.Google Scholar
  48. Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical Statistics, 22(3), 400–407.CrossRefGoogle Scholar
  49. Shannon, R. V. (1992). Temporal modulation transfer functions in patients with cochlear implants. Journal of the Acoustical Society of America, 91(4 Pt. 1), 2156–2164.CrossRefPubMedGoogle Scholar
  50. Snyder, D., & Miller, M. (1991). Random point processes in time and space. Springer texts in electrical engineering. New York: Springer-Verlag.Google Scholar
  51. Snyder, R. L., Vollmer, M., Moore, C. M., Rebscher, S. J., Leake, P. A., & Beitel, R. E. (2000). Responses of inferior colliculus neurons to amplitude-modulated intracochlear electric pulses in deaf cats. Journal of Neurophysiology, 84, 166–183.PubMedGoogle Scholar
  52. Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074–1089.CrossRefPubMedGoogle Scholar
  53. Viemeister, N. F., & Wakefield, G. H. (1991). Temporal integration and multiple looks. Journal of the Acoustical Society of America, 90, 858–865.CrossRefPubMedGoogle Scholar
  54. Whiten, D. (2006). Electro-anatomical models of the cochlear implant. PhD thesis, Harvard-MIT Program in Speech and Hearing Science and Biotechnology.Google Scholar
  55. Wilson, B. (2004). Engineering design of cochlear implants in: Cochlear implants: Auditory prostheses and electric hearing (pp 117–134). Springer-Verlag.Google Scholar
  56. Woo, J., Miller, C., & Abbas, P. (2009). Simulation of the electrically stimulated cochlear neuron: Modeling adaptation to trains of electric pulses. IEEE Transactions on Biomedical Engineering, 56,1348-1359CrossRefPubMedGoogle Scholar
  57. Xu, Y., & Collins, L. (2007). Predictions of psychophysical measurements for sinusoidal amplitude modulated (sam) pulse-train stimuli from a stochastic model. IEEE Transactions on Biomedical Engineering, 54(8), 1389–1398.CrossRefPubMedGoogle Scholar
  58. Zhang, F., Miller, C., Robinson, B., Abbas, P., & Hu, N. (2007). Changes across time in spike rate and spike amplitude of auditory nerve fibers stimulated by electric pulse trains. Journal of the Association for Research in Otolaryngology, 8, 356–372.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Joshua H. Goldwyn
    • 1
    Email author
  • Eric Shea-Brown
    • 1
  • Jay T. Rubinstein
    • 2
    • 3
  1. 1.Department of Applied MathematicsUniversity of WashingtonSeattleUSA
  2. 2.Department of Otolaryngology, Virginia Merrill Bloedel Hearing Research CenterUniversity of WashingtonSeattleUSA
  3. 3.Department of Biomedical EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations