Journal of Computational Neuroscience

, Volume 29, Issue 3, pp 485–493 | Cite as

Cross-trial correlation analysis of evoked potentials reveals arousal-related attenuation of thalamo-cortical coupling

  • Aleksander Sobolewski
  • Ewa Kublik
  • Daniel A. Świejkowski
  • Szymon Łęski
  • Jan K. Kamiński
  • Andrzej Wróbel
Article

Abstract

We describe a computational method for assessing functional connectivity in sensory neuronal networks. The method, which we term cross-trial correlation, can be applied to signals representing local field potentials (LFPs) evoked by sensory stimulations and utilizes their trial-to-trial variability. A set of single trial samples of a given post-stimulus latency from consecutive evoked potentials (EPs) recorded at a given site is correlated with such sets for all other latencies and recording sites. The results of this computation reveal how neuronal activities at various sites and latencies correspond to activation of other sites at other latencies. The method was used to investigate the functional connectivity of thalamo-cortical network of somatosensory system in behaving rats at two levels of alertness: habituated and aroused. We analyzed potentials evoked by vibrissal deflections recorded simultaneously from the ventrobasal thalamus and barrel cortex. The cross-trial correlation analysis applied to the early post-stimulus period (<25 ms) showed that the magnitude of the population spike recorded in the thalamus at 5 ms post-stimulus correlated with the cortical activation at 6–13 ms post-stimulus. This correlation value was reduced at 6–9 ms, i.e. at early postsynaptic cortical response, with increased level of the animals’ arousal. Similarly, the aroused state diminished positive thalamo-cortical correlation for subsequent early EP waves, whereas the efficacy of an indirect cortico-fugal inhibition (over 15 ms) did not change significantly. Thus we were able to characterize the state related changes of functional connections within the thalamo-cortical network of behaving animals.

Keywords

LFP Awake rat Vibrissae-barrel system Functional connectivity 

References

  1. Aertsen, A. M., Gerstein, G. L., Habib, M. K., & Palm, G. (1989). Dynamics of neuronal firing correlation: modulation of “effective connectivity”. Journal of Neurophysiology, 61(5), 900–917.PubMedGoogle Scholar
  2. Aguilar, J. R., & Castro-Alamancos, M. A. (2005). Spatiotemporal gating of sensory inputs in thalamus during quiescent and activated states. Journal of Neuroscience, 25, 10990–11002.CrossRefPubMedGoogle Scholar
  3. Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996). Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science, 273, 1868–1871.CrossRefPubMedGoogle Scholar
  4. Arnhold, J., Grassberger, P., Lehnertz, K., & Elger, C. E. (1999). A robust method for detecting interdependencies: application to intracranially recorded EEG. Physica D, 134, 419–430.CrossRefGoogle Scholar
  5. Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42, 33–84.CrossRefPubMedGoogle Scholar
  6. Buzsáki, G. (2006). Rhythms of the brain. New York: Oxford University Press.CrossRefGoogle Scholar
  7. Castro-Alamancos, M. A. (2004a). Dynamics of sensory thalamocortical synaptic networks during information processing states. Progress in Neurobiology, 74(4), 213–247.CrossRefPubMedGoogle Scholar
  8. Castro-Alamancos, M. A. (2004b). Absence of rapid sensory adaptation in neocortex during information processing states. Neuron, 41, 455–464.CrossRefPubMedGoogle Scholar
  9. Castro-Alamancos, M. A., & Oldford, E. (2002). Cortical sensory suppression during arousal is due to the activity-dependent depression of thalamocortical synapses. Journal of Physiology, 541(1), 319–331.CrossRefPubMedGoogle Scholar
  10. Ding, M., Bressler, S. L., Yang, W., & Liang, H. (2000). Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biological Cybernetics, 83, 35–45.CrossRefPubMedGoogle Scholar
  11. Fanselow, E. E., Sameshima, K., Baccala, L. A., & Nicolelis, M. A. (2001). Thalamic bursting in rats during different awake behavioral states. Proceedings of the National Academy of Sciences of the United States of America, 98(26), 15330–15335.CrossRefPubMedGoogle Scholar
  12. Fontanini, A., & Katz, D. B. (2005). 7 to 12 Hz activity in rat gustatory cortex reflects disengagement from a fluid self-administration task. Journal of Neurophysiology, 93(5), 2832–2840.CrossRefPubMedGoogle Scholar
  13. Gerstein, G. L., & Aertsen, A. M. (1985). Representation of cooperative firing activity among simultaneously recorded neurons. Journal of Neurophysiology, 54, 1513–1528.PubMedGoogle Scholar
  14. Gerstein, G. L., Perkel, D. H., & Dayhoff, J. E. (1985). Cooperative firing activity in simultaneously recorded populations of neurons: detection and measurement. Journal of Neuroscience, 5, 881–889.PubMedGoogle Scholar
  15. Gil, Z., Connors, B. W., & Amitai, Y. (1997). Differential regulation of neocortical synapses by neuromodulators and activity. Neuron, 19, 679–686.CrossRefPubMedGoogle Scholar
  16. Hasselmo, M. E. (1995). Neuromodulation and cortical function: modeling the physiological basis of behavior. Behavioural Brain Research, 67(1), 1–27.CrossRefPubMedGoogle Scholar
  17. Katz, Y., Heiss, J. E., & Lampl, I. (2006). Cross-whisker adaptation of neurons in the rat barrel cortex. Journal of Neuroscience, 26(51), 13363–13372.CrossRefPubMedGoogle Scholar
  18. Kimura, F. (2000). Cholinergic modulation of cortical function: a hypothetical role in shifting the dynamics in cortical network. Neuroscience Research, 38, 19–26.CrossRefPubMedGoogle Scholar
  19. Kisley, M. A., & Gerstein, G. L. (1999). Trial-to-trial variability and state-dependent modulation of auditory-evoked responses in cortex. Journal of Neuroscience, 19, 10451–10460.PubMedGoogle Scholar
  20. Korzeniewska, A., Crainiceanu, C. M., Kuś, R., Franaszczuk, P. J., & Crone, N. E. (2008). Dynamics of event-related causality in brain electrical activity. Human Brain Mapping, 29, 1170–1192.CrossRefPubMedGoogle Scholar
  21. Kublik, E. (2004). Contextual impact on sensory processing at the barrel cortex of awake rat. Acta Neurobiologiae Experimentalis (Wars), 64, 229–238.Google Scholar
  22. Kublik, E., Musiał, P., & Wróbel, A. (2001). Identification of principal components in cortical evoked potentials by brief surface cooling. Clinical Neurophysiology, 112, 1720–1725.CrossRefPubMedGoogle Scholar
  23. Kublik, E., Świejkowski, D. A., & Wróbel, A. (2003). Cortical contribution to sensory volleys recorded at thalamic nuclei of lemniscal and paralemniscal pathways. Acta Neurobiologiae Experimentalis (Wars), 63, 377–382.Google Scholar
  24. Lachaux, J., Rodriguez, E., Martinerie, J., & Varela, F. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8, 194–208.CrossRefPubMedGoogle Scholar
  25. Landisman, C. E., & Connors, B. W. (2007). VPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback. Cerebral Cortex, 17(12), 2853–2865.CrossRefPubMedGoogle Scholar
  26. Łęski, S., & Wójcik, D. K. (2008). Inferring coupling strength from event-related dynamics. Physical Review E, 78, 041918.CrossRefGoogle Scholar
  27. Łęski, S., Kublik, E., Świejkowski, D. A., Wróbel, A., Wójcik, D. K. (2009). Extracting functional components of neural dynamics with Independent Component Analysis and inverse Current Source Density. doi:10.1007/s10827-009-0203-1
  28. McCormick, D. A. (1993). Actions of acetylcholine in the cerebral cortex and thalamus and implications for function. Progress in Brain Research, 98, 303–308.CrossRefPubMedGoogle Scholar
  29. Musiał, P., Kublik, E., & Wróbel, A. (1998). Spontaneous variability reveals principal components in cortical evoked potentials. NeuroReport, 9, 2627–2631.CrossRefPubMedGoogle Scholar
  30. Perkel, D. H., Gerstein, G. L., & Moore, G. P. (1967). Neuronal spike trains and stochastic point processes. Biophysical Journal, 7, 419–440.CrossRefPubMedGoogle Scholar
  31. Quian Quiroga, R., Kraskov, A., Kreuz, T., & Grassberger, P. (2002). Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Physical Review E, 65, 041903.CrossRefGoogle Scholar
  32. Rigas, P., & Castro-Alamancos, M. A. (2009). Impact of persistent cortical activity (up States) on intracortical and thalamocortical synaptic inputs. J Neurophysiol, 102, 119–131.CrossRefPubMedGoogle Scholar
  33. Rosenblum, M. G., Pikovsky, A. S., & Kurths, J. (1996). Phase synchronization of chaotic oscillators. Physical Review Letters, 76, 1804–1807.CrossRefPubMedGoogle Scholar
  34. Sato, H., Hata, Y., Masui, H., & Tsumoto, T. (1987). A functional role of cholinergic innervation to neurons in the cat visual cortex. Journal of Neurophysiology, 58(4), 765–780.PubMedGoogle Scholar
  35. Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85, 461–464.CrossRefPubMedGoogle Scholar
  36. Sillito, A. M., & Kemp, J. A. (1983). Cholinergic modulation of the functional organization of the cat visual cortex. Brain Research, 289(1–2), 143–155.CrossRefPubMedGoogle Scholar
  37. Steriade, M. (1997). Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cerebral Cortex, 7, 583–604.CrossRefPubMedGoogle Scholar
  38. Steriade, M., & Timofeev, I. (2003). Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron, 37(4), 563–576.CrossRefPubMedGoogle Scholar
  39. Stoelzel, C. R., Bereshpolova, Y., & Swadlow, H. A. (2009). Stability of thalamocortical synaptic transmission across awake brain states. Journal of Neuroscience, 29(21), 6851–6859.CrossRefPubMedGoogle Scholar
  40. Waite, P. M. E. (2004). Trigeminal sensory system. In G. Paxinos (Ed.), The rat nervous system. Third edition (pp. 817–851). San Diego: Elsevier Academic Press.Google Scholar
  41. Wróbel, A., Kublik, E., & Musiał, P. (1998). Gating of the sensory activity within barrel cortex of the awake rat. Experimental Brain Research, 123, 117–123.CrossRefGoogle Scholar
  42. Wróbel, A., Ghazaryan, A., Bekisz, M., Bogdan, W., & Kamiński, J. (2007). Two streams of attention-dependent beta activity in the striate recipient zone of cat’s lateral posterior-pulvinar complex. Journal of Neuroscience, 27, 2230–2240.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Aleksander Sobolewski
    • 1
  • Ewa Kublik
    • 1
  • Daniel A. Świejkowski
    • 1
  • Szymon Łęski
    • 1
  • Jan K. Kamiński
    • 1
  • Andrzej Wróbel
    • 1
  1. 1.Nencki Institute of Experimental Biology—Polish Academy of SciencesWarsawPoland

Personalised recommendations