Journal of Computational Neuroscience

, Volume 29, Issue 3, pp 567–579 | Cite as

Local field potentials indicate network state and account for neuronal response variability

  • Ryan C. KellyEmail author
  • Matthew A. Smith
  • Robert E. Kass
  • Tai Sing Lee


Multineuronal recordings have revealed that neurons in primary visual cortex (V1) exhibit coordinated fluctuations of spiking activity in the absence and in the presence of visual stimulation. From the perspective of understanding a single cell’s spiking activity relative to a behavior or stimulus, these network fluctuations are typically considered to be noise. We show that these events are highly correlated with another commonly recorded signal, the local field potential (LFP), and are also likely related to global network state phenomena which have been observed in a number of neural systems. Moreover, we show that attributing a component of cell firing to these network fluctuations via explicit modeling of the LFP improves the recovery of cell properties. This suggests that the impact of network fluctuations may be estimated using the LFP, and that a portion of this network activity is unrelated to the stimulus and instead reflects ongoing cortical activity. Thus, the LFP acts as an easily accessible bridge between the network state and the spiking activity.


Local field potential Correlation Network state Spontaneous activity Multielectrode array Decoding Population coding 



This work was supported by a National Science Foundation (NSF) Integrative Graduate Education and Research Traineeship to RCK (DGE-0549352), National Eye Institute (NEI) grants EY015958 and EY018894 to MAS, National Institute of Mental Health (NIMH) Grant MH64445 and NSF CISE IIS 0713206 to TSL, and NIMH grant MH064537 to REK. Data was collected by RCK, MAS and Adam Kohn in his laboratory as a part of a collaborative effort between the Kohn laboratory at Albert Einstein College of Medicine and the Lee laboratory at Carnegie Mellon University. We thank Adam Kohn for collaboration, and we are also grateful to Amin Zandvakili, Xiaoxuan Jia and Stephanie Wissig for assistance in data collection.


  1. Abbott, L. F., & Dayan, P. (1999). The effect of correlated variability on the accuracy of a population code. Neural Computation, 11, 91–101.CrossRefPubMedGoogle Scholar
  2. Areili, A., Sterkin, A., Grinvald, A., & Aertson, A. (1996). Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses. Science, 273(5283), 1868–1871.CrossRefGoogle Scholar
  3. Averbeck, B. B., Latham, P. E., & Pouget, A. P. (2006). Neural correlations, population coding and computation. Nature Reviews. Neuroscience, 7, 358–366.CrossRefPubMedGoogle Scholar
  4. Bair, W., Zohary, E., & Newsome, W. T. (2001). Correlated firing in macaque visual area MT: Time scales and relationship to behavior. Journal of Neuroscience, 21, 1676–1697.PubMedGoogle Scholar
  5. Berens, P., Keliris, G., Ecker, A., Logothetis, N., & Tolias, A. (2008). Feature selectivity of the gamma-band of the local field potential in primate primary visual cortex. Frontiers in Neuroscience, 2, 199–207.CrossRefPubMedGoogle Scholar
  6. Buzsaki, G. (2004). Large-scale recording of neuronal ensembles. Nature Neuroscience, 7, 446–451.CrossRefPubMedGoogle Scholar
  7. Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002). Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. Journal of Neurophysiology, 88, 2530–2546.CrossRefPubMedGoogle Scholar
  8. David, S., Vinje, W., & Gallant, J. (2004). Natural stimulus statistics alter the receptive field structure of V1 neurons. Journal of Neuroscience, 24, 6991–7006.CrossRefPubMedGoogle Scholar
  9. Destexhe, A., & Contreras, D. (2006). Neuronal computations with stochastic network states. Science, 314, 85–90.CrossRefPubMedGoogle Scholar
  10. DeValois, R. L., Albrecht, D. G., & Thorell, L. G. (1982). Spatial frequency selectivity of cells in macaque visual cortex. Vision Research, 22, 545–559.CrossRefGoogle Scholar
  11. Eggermont, J., & Smith, G. (1995). Synchrony between single-unit activity and local field potentials in relation to periodicity coding in primary auditory cortex. Journal of Neurophysiology, 73, 227–245.PubMedGoogle Scholar
  12. Foster, K. H., Gaska, J. P., Nagler, M., & Pollen, D. A. (1985). Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the Macaque monkey. Journal of Physiology, 365, 331–363.PubMedGoogle Scholar
  13. Frien, A., Eckhorn, R., Bauer, R., Woelbern, T., & Gabriel, A. (2000). Fast oscillations display sharper orientation tuning than slower components of the same recordings in striate cortex of the awake monkey. European Journal of Neuroscience, 12, 1453–1465.CrossRefPubMedGoogle Scholar
  14. Gray, C. M., Maldonado, P. E., Wilson, M., & McNaughton, B. (1995). Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. Journal of Neuroscience Methods, 63, 43–54.CrossRefPubMedGoogle Scholar
  15. Hardin, J. W., & Hilbe, J. (2007). Generalized linear models and extensions. College Station: Stata.Google Scholar
  16. Haslinger, R., Ulbert, I., Moore, C., Brown, E., & Devor, A. (2006). Analysis of LFP phase predicts sensort response of barrel cortex. Journal of Neurophysiology, 96, 1658–1663.CrossRefPubMedGoogle Scholar
  17. He, B., Snyder, A., Zempel, J., Smyth, M., & Raichle, M. (2008). Electrophysiological correlates of the brains intrinsic large-scale functional architecture. Proceedings of the National Academy of Sciences of the United States of America, 105, 16039–16044.CrossRefPubMedGoogle Scholar
  18. Henrie, J., & Shapley, R. (2005). LFP power spectra in V1 cortex: The graded effect of stimulus contrast. Journal of Neurophysiology, 94, 479–490.CrossRefPubMedGoogle Scholar
  19. Huang, X., & Lisberger, S. (2009). Noise correlations in cortical area MT and their potential impact on trial-by-trial variation in the direction and speed of smooth pursuit eye movements. Journal of Neurophysiology, 101, 3012–3030.CrossRefPubMedGoogle Scholar
  20. Johnson, H., & Buonomano, D. (2007). Development and plasticity of spontaneous activity and up states in cortical organotypic slices. Journal of Neuroscience, 27(22), 5915–5925.CrossRefPubMedGoogle Scholar
  21. Kass, R., & Ventura, V. (2001). A spike-train probability model. Neural Computation, 13, 1713–1720.CrossRefPubMedGoogle Scholar
  22. Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D., & Carandini, M. (2009). Local origin of field potentials in visual cortex. Neuron, 61, 35–41.CrossRefPubMedGoogle Scholar
  23. Kelly, R. C., Smith, M. A., Samonds, J. M., Kohn, A., Bonds, A. B., Movshon, J. A., et al. (2007). Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. Journal of Neuroscience, 27, 261–264.CrossRefPubMedGoogle Scholar
  24. Kohn, A., & Smith, M. A. (2005). Stimulus dependence of neuronal correlation in primary visual cortex of the Macaque. Journal of Neuroscience, 25, 3661–3673.CrossRefPubMedGoogle Scholar
  25. Kohn, A., Zandvakili, A., & Smith, M. A. (2009). Correlations and brain states: From electrophysiology to functional imaging. Current Opinion in Neurobiology, 19, 434–438.CrossRefPubMedGoogle Scholar
  26. Körding, K., Kayser, C., Einhäuser, W., & König, P. (2004). How are complex cell properties adapted to the statistics of natural stimuli? Journal of Neurophysiology, 91, 206–212.CrossRefPubMedGoogle Scholar
  27. Kreiman, G., Hung, C., Kraskov, A., Quiroga, R., Poggio, T., & DiCarlo, J. (2006). Object selectivity of local field potentials and spikes in the Macaque inferior temporal cortex. Neuron, 49, 433–445.CrossRefPubMedGoogle Scholar
  28. Kruse, W., & Eckhorn, R. (1996). Inhibition of sustained gamma oscillations (35–80 Hz) by fast transient responses in cat visual cortex. Proceedings of the National Academy of Sciences, 93, 6112–6117.CrossRefGoogle Scholar
  29. Lampl, I., Reichova, I., & Ferster, D. (1999). Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron, 22, 361–374.CrossRefPubMedGoogle Scholar
  30. Legatt, A. D., Arezzo, J., & Vaughan, H. G. (1980). Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity: Effects of volume-conducted potentials. Journal of Neuroscience Methods, 2, 203–217.CrossRefPubMedGoogle Scholar
  31. Leopold, D. A., Murayama, Y., & Logothetis, N. K. (2003). Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging. Cerebral Cortex, 13, 422–433.CrossRefPubMedGoogle Scholar
  32. Liu, J., & Newsome, W. (2006). Local field potential in cortical area MT: Stimulus tuning and behavioral correlations. Journal of Neuroscience, 26, 7779–7790.CrossRefPubMedGoogle Scholar
  33. Luczak, A., Bartho, P., Marguet, S., Buzsaki, G., & Harris, K. (2007). Sequential structure of neocortical spontaneous activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 347–352.CrossRefPubMedGoogle Scholar
  34. Mitzdorf, U. (1987). Properties of the evoked potential generators: Current source-density analysis of visually evoked potentials in the cat cortex. International Journal of Neuroscience, 33, 33–59.CrossRefPubMedGoogle Scholar
  35. Nauhaus, I., Busse, L., Carandini, M., & D.L., R. (2009). Stimulus contrast modulates functional connectivity in visual cortex. Nature Neuroscience, 12, 70–76.CrossRefPubMedGoogle Scholar
  36. Nir, Y., Mukamel, R., Dinstein, I., Privman, E., Harel, M., Fisch, L., et al. (2008). Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nature Neuroscience, 11(9), 1100–1108.CrossRefPubMedGoogle Scholar
  37. Paninski, L. (2004). Maximum likelihood estimation of cascade point-process encoding models. Network: Computation in Neural Systems, 15, 243–262.CrossRefGoogle Scholar
  38. Paninski, L., Brown, E., Iyengar, S., & Kass, R. (2009). Statistical models of spike trains. In C. Liang, & G. Lord (Eds.), Stochastic methods in neuroscience (pp. 278–303). Oxford: Clarendon.Google Scholar
  39. Paninski, L., Pillow, J., & Lewi, J. (2007). Statistical models for neural encoding, decoding, and optimal stimulus design. Progress in Brain Research, 165, 493.CrossRefPubMedGoogle Scholar
  40. Petersen, C., Grinvald, A., & Sakmann, B. (2003). Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell recordings and neuron reconstructions. Journal of Neuroscience, 23, 1298–1309.PubMedGoogle Scholar
  41. Pillow, J. (2007). Likelihood-based approaches to modeling the neural code. In K. Doya, S. Ishii, A. Pouget, & R. Rao, (Eds.), Bayesian brain: Probabilistic approaches to neural coding (pp. 53–70). Cambridge: MIT.Google Scholar
  42. Pillow, J., & Latham, P. (2008). Neural characterization in partially observed populations of spiking neurons. Advances in Neural Information Processing Systems, 20, 1161–1168.Google Scholar
  43. Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., et al. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454, 995–999.CrossRefPubMedGoogle Scholar
  44. Rasch, M., Gretton, A., Murayama, Y., Maass, W., & Logothetis, N. (2008). Inferring spike trains from local field potentials. Journal of Neurophysiology, 99, 1461–1476.CrossRefPubMedGoogle Scholar
  45. Ringach, D., Hawken, M., & Shapley, R. (2002). Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. Journal of Visualization, 2, 12–24.CrossRefGoogle Scholar
  46. Rousche, P. J., & Normann, R. A. (1992). A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Annals of Biomedical Engineering, 20, 413–422.CrossRefPubMedGoogle Scholar
  47. Samonds, J. M., & Bonds, A. B. (2005). Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex. Journal of Neurophysiology, 93, 223–236.CrossRefPubMedGoogle Scholar
  48. Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. Journal of Neuroscience, 18, 3870–3896.PubMedGoogle Scholar
  49. Shlens, J., Field, G., Gauthier, J., Greschner, M., Sher, A., Litke, A., & Chichilnisky, E. (2009). The structure of large-scale synchronized firing in primate retina. Journal of Neuroscience, 29, 5022–5031.CrossRefPubMedGoogle Scholar
  50. Shoham, S., Fellows, M., & Normann, R. (2003). Robust, automatic spike sorting using mixtures of multivariate t-distributions. Journal of Neuroscience Methods, 127, 111–122.CrossRefPubMedGoogle Scholar
  51. Siegel, M., & Koenig, P. (2003). A functional gamma-band defined by stimulus-dependent synchronization in area 18 of awake behaving cats. Journal of Neuroscience, 23, 4251–4260.PubMedGoogle Scholar
  52. Smith, M. A., Bair, W., & Movshon, J. A. (2002). Signals in macaque V1 neurons that support the perception of Glass patterns. Journal of Neuroscience, 22, 8334–8345.PubMedGoogle Scholar
  53. Smith, M. A., & Kohn, A. (2008). Spatial and temporal scales of neuronal correlation in primary visual cortex. Journal of Neuroscience, 28, 12591–12603.CrossRefPubMedGoogle Scholar
  54. Tsodyks, M., Kenet, T., Grinvald, A., & Arieli, A. (1999). Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science, 286(5446), 1943–1946.CrossRefPubMedGoogle Scholar
  55. Xing, D., Yeh, C., & Shapley, R. (2009). Spatial spread of the local field potential and its laminar variation in visual cortex. Journal of Neuroscience, 29, 11540–11549.CrossRefPubMedGoogle Scholar
  56. Zohary, E., Shadlen, M. N., & Newsome, W. T. (1994). Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 370, 140–143.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ryan C. Kelly
    • 1
    • 2
    Email author
  • Matthew A. Smith
    • 1
    • 3
  • Robert E. Kass
    • 1
    • 4
    • 5
  • Tai Sing Lee
    • 1
    • 2
  1. 1.Center for the Neural Basis of CognitionPittsburghUSA
  2. 2.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of NeuroscienceUniversity of PittsburghPittsburghUSA
  4. 4.Department of StatisticsCarnegie Mellon UniversityPittsburghUSA
  5. 5.Machine Learning DepartmentCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations