Journal of Computational Neuroscience

, Volume 29, Issue 3, pp 459–473 | Cite as

Extracting functional components of neural dynamics with Independent Component Analysis and inverse Current Source Density

  • Szymon Łęski
  • Ewa Kublik
  • Daniel A. Świejkowski
  • Andrzej Wróbel
  • Daniel K. Wójcik
Article

Abstract

Local field potentials have good temporal resolution but are blurred due to the slow spatial decay of the electric field. For simultaneous recordings on regular grids one can reconstruct efficiently the current sources (CSD) using the inverse Current Source Density method (iCSD). It is possible to decompose the resultant spatiotemporal information about the current dynamics into functional components using Independent Component Analysis (ICA). We show on test data modeling recordings of evoked potentials on a grid of 4×5×7 points that meaningful results are obtained with spatial ICA decomposition of reconstructed CSD. The components obtained through decomposition of CSD are better defined and allow easier physiological interpretation than the results of similar analysis of corresponding evoked potentials in the thalamus. We show that spatiotemporal ICA decompositions can perform better for certain types of sources but it does not seem to be the case for the experimental data studied. Having found the appropriate approach to decomposing neural dynamics into functional components we use the technique to study the somatosensory evoked potentials recorded on a grid spanning a large part of the forebrain. We discuss two example components associated with the first waves of activation of the somatosensory thalamus. We show that the proposed method brings up new, more detailed information on the time and spatial location of specific activity conveyed through various parts of the somatosensory thalamus in the rat.

Keywords

Local field potentials (LFP) Inverse Current Source Density (iCSD) Independent Component Analysis (ICA) Somatosensory evoked potentials (EP) Thalamic processing 

Supplementary material

10827_2009_203_MOESM1_ESM.pdf (509 kb)
(PDF 508 kb).

References

  1. Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.CrossRefPubMedGoogle Scholar
  2. Comon, P. (1994). Independent Component Analysis, a new concept? Signal Processing, 36(3), 287–314.CrossRefGoogle Scholar
  3. de Solages, C., Szapiro, G., Brunel, N., Hakim, V., Isope, P., Buisseret, P., et al. (2008). High-frequency organization and synchrony of activity in the Purkinje cell layer of the cerebellum. Neuron, 58(5), 775–788.CrossRefPubMedGoogle Scholar
  4. Diamond, M. E., Armstrong-James, M., & Ebner, F. F. (1992). Somatic sensory responses in the rostral sector of the posterior group (pom) and in the ventral posterior medial nucleus (vpm) of the rat thalamus. The Journal of Comparative Neurology, 318(4), 462–476.CrossRefPubMedGoogle Scholar
  5. Freeman, J. A., & Nicholson, C. (1975). Experimental optimization of current source-density technique for anuran cerebellum. Journal of Neurophysiology, 38(2), 369–382.PubMedGoogle Scholar
  6. Himberg, J., Hyvärinen, A., & Esposito, F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage, 22(3), 1214–1222.CrossRefPubMedGoogle Scholar
  7. Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94(3), 1904–1911.CrossRefPubMedGoogle Scholar
  8. Land, P. W., Buffer, S. A., & Yaskosky, J. D. (1995). Barreloids in adult rat thalamus: Three-dimensional architecture and relationship to somatosensory cortical barrels. The Journal of Comparative Neurology, 355(4), 573–588.CrossRefPubMedGoogle Scholar
  9. Łęski, S., Wójcik, D. K., Tereszczuk, J., Świejkowski, D. A., Kublik, E., & Wróbel, A. (2007). Inverse Current-Source Density method in 3D: Reconstruction fidelity, boundary effects, and influence of distant sources. Neuroinformatics, 5(4), 207–222.CrossRefPubMedGoogle Scholar
  10. Lin, B., Colgin, L. L., Brücher, F. A., Arai, A. C., & Lynch, G. (2002). Interactions between recording technique and AMPA receptor modulators. Brain Research, 955(1–2), 164–173.CrossRefPubMedGoogle Scholar
  11. Lipton, M. L., Fu, K. M. G., Branch, C. A., & Schroeder, C. E. (2006). Ipsilateral hand input to area 3b revealed by converging hemodynamic and electrophysiological analyses in macaque monkeys. Journal of Neuroscience, 26(1), 180–185.CrossRefPubMedGoogle Scholar
  12. Lo, F. S., Guido, W., & Erzurumlu, R. S. (1999). Electrophysiological properties and synaptic responses of cells in the trigeminal principal sensory nucleus of postnatal rats. Journal of Neurophysiology, 82(5), 2765–2775.PubMedGoogle Scholar
  13. McKeown, M. J., Makeig, S., Brown, G. G., Jung, T., Kindermann, S. S., Bell, A. J., et al. (1998). Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 6(3), 160–188.CrossRefPubMedGoogle Scholar
  14. Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65(1), 37–100.PubMedGoogle Scholar
  15. Nicholson, C., & Freeman, J. A. (1975). Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. Journal of Neurophysiology, 38(2), 356–368.PubMedGoogle Scholar
  16. Nicolelis, M. A., Chapin, J. K., & Lin, R. C. (1992). Somatotopic maps within the zona incerta relay parallel gabaergic somatosensory pathways to the neocortex, superior colliculus, and brainstem. Brain Research, 577(1), 134–141.CrossRefPubMedGoogle Scholar
  17. Novak, J. L., & Wheeler, B. C. (1989). Two-dimensional current source density analysis of propagation delays for components of epileptiform bursts in rat hippocampal slices. Brain Research, 497(2), 223–230.CrossRefPubMedGoogle Scholar
  18. Nunez, P. L., & Srinivasan, R. (2005). Electric fields of the brain: The neurophysics of EEG. Oxford: Oxford University Press.Google Scholar
  19. Paxinos, G., & Watson, C. (1996). The rat brain in stereotaxic coordinates (Compact 3rd ed.). London: Academic Press.Google Scholar
  20. Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates (6th ed.). London: Academic Press.Google Scholar
  21. Pettersen, K. H., Devor, A., Ulbert, I., Dale, A. M., & Einevoll, G. T. (2006). Current-source density estimation based on inversion of electrostatic forward solution: Effects of finite extent of neuronal activity and conductivity discontinuities. Journal of Neuroscience Methods, 154(1–2), 116–133.CrossRefPubMedGoogle Scholar
  22. Pierret, T., Lavallée, P., & Deschênes, M. (2000). Parallel streams for the relay of vibrissal information through thalamic barreloids. Journal of Neuroscience, 20(19), 7455–7462.PubMedGoogle Scholar
  23. Rajkai, C., Lakatos, P., Chen, C. M., Pincze, Z., Karmos, G., & Schroeder, C. E. (2008). Transient cortical excitation at the onset of visual fixation. Cerebral Cortex, 18(1), 200–209.CrossRefPubMedGoogle Scholar
  24. Reidl, J., Starke, J., Omer, D. B., Grinvald, A., & Spors, H. (2007). Independent component analysis of high-resolution imaging data identifies distinct functional domains. Neuroimage, 34(1), 94–108.CrossRefPubMedGoogle Scholar
  25. Saleem, A. B., Krapp, H. G., & Schultz, S. R. (2008). Receptive field characterization by spike-triggered independent component analysis. Journal of Vision, 8(13), 2.1–216.CrossRefGoogle Scholar
  26. Schiessl, I., Stetter, M., Mayhew, J. E., McLoughlin, N., Lund, J. S., & Obermayer, K. (2000). Blind signal separation from optical imaging recordings with extended spatial decorrelation. IEEE Transactions on Biomedical Engineering, 47(5), 573–577.CrossRefPubMedGoogle Scholar
  27. Schroeder, C. E., Tenke, C. E., & Givre, S. J. (1992) Subcortical contributions to the surface-recorded flash-vep in the awake macaque. Electroencephalography and Clinical Neurophysiology, 84(3), 219–231.CrossRefPubMedGoogle Scholar
  28. Shimono, K., Brucher, F., Granger, R., Lynch, G., & Taketani, M. (2000) Origins and distribution of cholinergically induced beta rhythms in hippocampal slices. Journal of Neuroscience, 20(22), 8462–8473.PubMedGoogle Scholar
  29. Stoelzel, C. R., Bereshpolova, Y., & Swadlow, H. A. (2009). Stability of thalamocortical synaptic transmission across awake brain states. Journal of Neuroscience, 29(21), 6851–6859.CrossRefPubMedGoogle Scholar
  30. Stone, J. V., & Porrill, J. (1999). Regularisation using spatiotemporal independence and predictability. Computational Neuroscience Report 201, Psychology Department, Sheffield University.Google Scholar
  31. Stone J. V., Porrill J., Porter N. R., & Wilkinson I. D. (2002). Spatiotemporal independent component analysis of event-related fMRI data using skewed probability density functions. Neuroimage, 15(2), 407–421.CrossRefPubMedGoogle Scholar
  32. Tanskanen, J. M. A., Mikkonen, J. E., & Penttonen, M. (2005). Independent component analysis of neural populations from multielectrode field potential measurements. Journal of Neuroscience Methods, 145(1–2), 213–232.CrossRefPubMedGoogle Scholar
  33. Tenke, C. E., Schroeder, C. E., Arezzo, J. C., & Vaughan, H. G. (1993). Interpretation of high-resolution current source density profiles: A simulation of sublaminar contributions to the visual evoked potential. Experimental Brain Research, 94(2), 183–192.CrossRefGoogle Scholar
  34. Urbain, N., & Deschênes, M. (2007). A new thalamic pathway of vibrissal information modulated by the motor cortex. Journal of Neuroscience, 27(45), 12407–12412.CrossRefPubMedGoogle Scholar
  35. Vaknin, G., DiScenna, P. G., & Teyler, T. J. (1988). A method for calculating current source density (CSD) analysis without resorting to recording sites outside the sampling volume. Journal of Neuroscience Methods, 24(2), 131–135.CrossRefPubMedGoogle Scholar
  36. Veinante, P., & Deschênes, M. (1999). Single- and multi-whisker channels in the ascending projections from the principal trigeminal nucleus in the rat. Journal of Neuroscience, 19(12), 5085–5095.PubMedGoogle Scholar
  37. Waite, P. (2004). Trigeminal sensory system. In G. Paxinos (Ed.), The rat nervous system (pp. 817–851). Amsterdam: Elsevier.Google Scholar
  38. Wójcik, D. K., & Łęski, S. (2009). Current source density reconstruction from incomplete data. Neural Computation. doi:10.1162/neco.2009.07-08-831.PubMedGoogle Scholar
  39. Ylinen, A., Bragin, A., Nádasdy, Z., Jandó, G., Szabó, I., Sik, A., et al. (1995). Sharp wave-associated high-frequency oscillation (200 hz) in the intact hippocampus: Network and intracellular mechanisms. Journal of Neuroscience, 15(1), 30–46.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Szymon Łęski
    • 1
  • Ewa Kublik
    • 1
  • Daniel A. Świejkowski
    • 1
  • Andrzej Wróbel
    • 1
  • Daniel K. Wójcik
    • 1
  1. 1.Department of NeurophysiologyNencki Institute of Experimental BiologyWarsawPoland

Personalised recommendations