Journal of Computational Neuroscience

, Volume 28, Issue 1, pp 137–154 | Cite as

Models of cortical networks with long-range patchy projections

  • Nicole VogesEmail author
  • Christian Guijarro
  • Ad Aertsen
  • Stefan Rotter


The cortex exhibits an intricate vertical and horizontal architecture, the latter often featuring spatially clustered projection patterns, so-called patches. Many network studies of cortical dynamics ignore such spatial structures and assume purely random wiring. Here, we focus on non-random network structures provided by long-range horizontal (patchy) connections that remain inside the gray matter. We investigate how the spatial arrangement of patchy projections influences global network topology and predict its impact on the activity dynamics of the network. Since neuroanatomical data on horizontal projections is rather sparse, we suggest and compare four candidate scenarios of how patchy connections may be established. To identify a set of characteristic network properties that enables us to pin down the differences between the resulting network models, we employ the framework of stochastic graph theory. We find that patchy projections provide an exceptionally efficient way of wiring, as the resulting networks tend to exhibit small-world properties with significantly reduced wiring costs. Furthermore, the eigenvalue spectra, as well as the structure of common in- and output of the networks suggest that different spatial connectivity patterns support distinct types of activity propagation.


Cortical network model Horizontal synaptic connectivity Wiring optimization Stochastic graph theory 



We thank Almut Schüz and Valentino Braitenberg for stimulating discussions. Special thanks to Johannes Hausmann and Sarah Jarvis for help and encouragement during writing. This work was funded by a dissertation grant to N.V. from the Institute for Frontier Areas of Psychology and Mental Health, Freiburg. Further support was received from the BMBF (grant 01GQ0420) and the EU (grant 15879, FACETS).


  1. Abeles, M. (1991). Corticonics: Neural circuits of the cerebral cortex. Cambridge: Cambridge University Press.Google Scholar
  2. Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47–97.CrossRefGoogle Scholar
  3. Amir, Y., Harel, M., & Malach, R. (1993). Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex. Journal of Comparative Neurology, 334, 19–46.CrossRefPubMedGoogle Scholar
  4. Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow & Metabolism, 21, 1133–1145.CrossRefGoogle Scholar
  5. Bassett, D. S., & Bullmore, E. (2006). Small-world brain networks. Neuroscientist, 12(6), 512–523.CrossRefPubMedGoogle Scholar
  6. Batschelet, E. (1981). Circular statistics in biology. London: Academic.Google Scholar
  7. Binzegger, T., Douglas, R. J., & Martin, K. A. C. (2004). A quantitative map of the circuit of cat primary visual cortex. Journal of Neuroscience, 39(24), 8441–8453.CrossRefGoogle Scholar
  8. Binzegger, T., Douglas, R. J., & Martin, K. A. C. (2007). Stereotypical bouton clustering of individual neurons in cat primary visual cortex. Journal of Neuroscience, 27(45), 12242–12254.CrossRefPubMedGoogle Scholar
  9. Bonhoeffer, T., & Grinvald, A. (1991). Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature, 353(6343), 429–431.CrossRefPubMedGoogle Scholar
  10. Bonhoeffer, T., & Grinvald, A. (1993). The layout of iso-orientation domains in area 18 of cat visual cortex: Optical imaging reveals a pinwheel-like organization. Journal of Neuroscience, 12(10), 4157–4180.Google Scholar
  11. Bosking, W. H., Zhang, Y., Schofield, B., & Fitzpatrick, D. (1997). Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. Journal of Neuroscience, 17(6), 2112–2127.PubMedGoogle Scholar
  12. Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8(3), 183–208.CrossRefPubMedGoogle Scholar
  13. Burkhalter, A., & Charles, V. (1990). Organization of local axon collaterals of efferent projection neurons in the rat visual cortex. Journal of Comparative Neurology, 302, 920–934.CrossRefPubMedGoogle Scholar
  14. Buzas, P., Kovacs, K., Ferecsko, A. S., Budd, J. M. L., Eysel, U. T., & Kisvarday, Z. F. (2006). Model-based analysis of excitatory lateral connections in the visual cortex. Journal of Comparative Neurology, 499, 861–881.CrossRefPubMedGoogle Scholar
  15. Buzsaki, G., Geisler, C., Henze, D., & Wang, X.-J. (2004). Interneuron diversity series: Circuit complexity and axon wiring economy of cortical interneurons. TINS, 27(4), 186–193.PubMedGoogle Scholar
  16. Callaway, E. M., & Katz, L. C. (1990). Emergence and refinement of clustered horizontal connections in cat striate cortex. Journal of Neuroscience, 10(4), 1134–1153.PubMedGoogle Scholar
  17. Chisum, H. J., & Fitzpatrick, D. (2004). The contribution of vertical and horizontal connections to the receptive field center and surround in v1. Neural Networks, 17, 681693.CrossRefGoogle Scholar
  18. Chklovskii, D. (2000). Optimal sizes of dendritic and axonal arbors in a topographic projection. Journal of Neurophysiology, 83, 2113–2119.PubMedGoogle Scholar
  19. Chklovskii, D. B. (2004). Synaptic connectivity and neuronal morphology: Two sides of the same coin. Neuron, 43, 609–617.PubMedGoogle Scholar
  20. DeLosRios, P., & Petermann, T. (2007). Existence, cost and robustness of spatial small-world networks. IJBC, 17(7), 2331–2342.Google Scholar
  21. Denker, M., Timme, M., Diesmann, M., Wolf, F., & Geisel, T. (2004). Breaking synchrony by heterogeneity in complex networks. Physical Review Letters, 92, 074103.CrossRefPubMedGoogle Scholar
  22. Diesmann, M., Gewaltig, M.-O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402(6761), 529–533.CrossRefPubMedGoogle Scholar
  23. Farkas, I. J., Derenyi, I., Barabasi, A.-L., & Vicsek, T. (2001). Spectra of real-world graphs: Beyond the semicircle law. Physical Review E, 64, 026704.CrossRefGoogle Scholar
  24. Fisher, N. I. (1993). Statistical analysis of circular data. Cambridge: Cambridge University Press.Google Scholar
  25. Gilbert, C. D., & Wiesel, T. N. (1983). Clustered intrinsic connections in cat visual cortex. Journal of Neuroscience, 5, 1116–1133.Google Scholar
  26. Gilbert, C. D., & Wiesel, T. N. (1989). Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. Journal of Neuroscience, 9(7), 2432–2442.PubMedGoogle Scholar
  27. Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biological Cybernetics, 82, 111–121.CrossRefPubMedGoogle Scholar
  28. Johansson, C., & Lansner, A. (2007). Imposing biological constraints onto an abstract neocortical attractor network model. Neural Computation, 19, 1871–1896.CrossRefPubMedGoogle Scholar
  29. Johnson, D. M. G., Illig, K. R., Behan, M., & Haberly, L. B. (2000). New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that primary olfactory cortex functions like association cortex in other sensory systems. Journal of Neuroscience, 20(18), 6974–6982.PubMedGoogle Scholar
  30. Kaiser, M., & Hilgetag, C. C. (2004). Modelling the development of cortical systems networks. Neurocomputing, 58–60, 297–302.CrossRefGoogle Scholar
  31. Kalisman, N., Silberberg, G., & Markram, H. (2003). Deriving physical connectivity from neuronal morphology. Biological Cybernetics, 88(3), 210–218.CrossRefPubMedGoogle Scholar
  32. Kisvarday, Z. F., & Eysel, U. T. (1992). Cellular organization of reciprocal patchy networks in layer III of cat visual cortex (area 17). Neuroscience, 46, 275–286.CrossRefPubMedGoogle Scholar
  33. Koroutchev, K., & Korutcheva, E. (2006). Improved storage capacity of hebbian learning attractor neural network with bump formations. In LNCS (Vol. 4131, pp. 234–243).Google Scholar
  34. Kriener, B., Helias, M., Aertsen, A., & Rotter, S. (2009). Correlations in spiking neuronal networks with distance dependent connections. Journal of Computational Neuroscience, 27, 177–200.CrossRefPubMedGoogle Scholar
  35. Kriener, B., Tetzlaff, T., Aertsen, A., Diesmann, M., & Rotter, S. (2008). Correlations and population dynamics in cortical networks. Neural Computation, 20, 2185–2226.CrossRefPubMedGoogle Scholar
  36. Kumar, A., Rotter, S., & Aertsen, A. (2008a). Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. Journal of Neuroscience, 28(20), 5268–5280.CrossRefPubMedGoogle Scholar
  37. Kumar, A., Schrader, S., Aertsen, A., & Rotter, S. (2008b). The high-conductance state of cortical networks. Neural Computation, 20(1), 1–43.CrossRefPubMedGoogle Scholar
  38. Levitt, J., & Lund, J. (2002). Intrinsic connections in mammalian cerebral cortex. In A. Schüz, & R. Miller (Eds.), Cortical areas: Unity and diversity (chap. 7, pp. 133–154). London: Taylor and Francis.Google Scholar
  39. Lewis, D., Melchitzky, D., & Burgos, G.-G. (2002). Specificity in the functional architecture of primate prefontal cortex. Journal of Neurocytology, 31, 265–276.CrossRefPubMedGoogle Scholar
  40. Lohmann, H., & Rörig, B. (1994). Long-range horizontal connections between supragranular pyramidal cells in the extrastiate visual cortex of the rat. Journal of Comparative Neurology, 344, 543–558.CrossRefPubMedGoogle Scholar
  41. Lund, J., Yoshioka, T., & Levitt, J. (1993). Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. Cerebral Cortex, 3(2), 148–162.CrossRefPubMedGoogle Scholar
  42. Mehring, C., Hehl, U., Kubo, M., Diesmann, M., & Aertsen, A. (2003). Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biological Cybernetics, 88(5), 395–408.CrossRefPubMedGoogle Scholar
  43. Melchitzky, D. S., Gonzale-Burgos, G., Barrionuevo, G., & Lewis, D. A. (2001). Synaptic targets of the intrinsic axon collaterals of supragranular pyramidal neurons in monkey prefontal cortex. Journal of Comparative Neurology, 430, 209–221.CrossRefPubMedGoogle Scholar
  44. Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.CrossRefGoogle Scholar
  45. Ojima, H., & Takayanagi, M. (2004). Cortical convergence from different frequency domains in the cat primary auditory cortex. Neuroscience, 126, 203–212.CrossRefPubMedGoogle Scholar
  46. Ojima, H., Honda, C. N., & Jones, E. G. (1991). Patterns of axon collateralization of identified supragranular pyramidal neurons in the cat auditory cortex. Cerebral Cortex, 1, 80–94.CrossRefPubMedGoogle Scholar
  47. Pucak, M. L., Levitt, J. B., Lund, J. S., & Lewis, D. A. (1996). Patterns of intrinsic and associational circuitry in monkey prefrontal cortex. Journal of Comparative Neurology, 376, 614–630.CrossRefPubMedGoogle Scholar
  48. Roudi, Y., & Treves, A. (2004). An associative network with spatially organized connectivity. Journal of Statistical Mechanics: Theory and Experiment (P07010).Google Scholar
  49. Roudi, Y., & Treves, A. (2008). Representing where along with what information in a model of a cortical patch. PLoS Computers in Biology, 4(3), e1000012.CrossRefGoogle Scholar
  50. Roxin, A., Brunel, N., & Hansel, D. (2005). The role of delays in shaping spatio-temporal dynamics of neuronal activity in large networks. Physical Review Letters, 94(23), 238103.CrossRefPubMedGoogle Scholar
  51. Rumberger, A., Tyler, C. J., & Lund, J. S. (2001). Intra- and inter-areal connectivity between the primary visual cortex V1 and the area immediately surrounding V1 in the rat. Neuroscience, 102, 35–52.CrossRefPubMedGoogle Scholar
  52. Schüz, A., & Braitenberg, V. (2002). The human cortical white matter: Quantitative aspects of cortico-cortical long-range connectivity. In A. Schüz, & R. Miller (Eds.), Cortical areas: Unity and diversity (chap. 16, pp. 377–385). London: Taylor and Francis.Google Scholar
  53. Schüz, A., Chaimow, D., & Liewald, D. (2005). Quantitative aspects of corticocortical connections: A tracer study in the mouse. Cerebral Cortex, 16, 1474–1486.CrossRefPubMedGoogle Scholar
  54. Sporns, O., & Zwi, D. Z. (2004). The small world of the cerebral cortex. Neuroinformatics, 2, 145–162.CrossRefPubMedGoogle Scholar
  55. Stepanyants, A., Hirsch, J., Martinez, L. M., Kisvarday, Z. F., Ferecsko, A. S., & Chklovskii, D. B. (2008). Local potential connectivity in cat primary visual cortex. Cerebral Cortex, 18(1), 13–28.CrossRefPubMedGoogle Scholar
  56. Strogatz, S. H. (2001). Exploring complex networks. Nature, 410, 268–276.CrossRefPubMedGoogle Scholar
  57. Tetzlaff, T., Einevoll, G. T., & Diesmann, M. (2009). Synchronization and rate dynamics in embedded synfire chains: Effect of network heterogeneity and feedback. BMC Neuroscience, 10(Suppl 1):P258.CrossRefGoogle Scholar
  58. Tetzlaff, T., Morrison, A., Timme, M., & Diesmann, M. (2005). Heterogeneity breaks global synchrony in large networks. In Proceedings of the 30th Göttingen neurobiology conference.Google Scholar
  59. Thomson, A. M., & Bannister, P. (2003). Interlaminar connections in the neocortex. Cerebral Cortex, 13, 5–14.CrossRefPubMedGoogle Scholar
  60. van Hooser, S. D., Heimel, J. A., Chung, S., & Nelson, S. N. (2006). Lack of patchy horizontal connectivity in primary visual cortex of a mammal without orientation maps. Journal of Neuroscience, 26(29), 7680–7692.CrossRefPubMedGoogle Scholar
  61. Voges, N. (2007). Statistical analysis of cortical networks based on neuroanatomical data. Ph.D. thesis, University of Freiburg.Google Scholar
  62. Voges, N., & Perrinet, L. (2009). Phase space analysis of networks based on biologically realistic parameters. Journal of Physiology (Paris) (in press).Google Scholar
  63. Voges, N., Aertsen, A., & Rotter, S. (2007). Statistical analysis of spatially embedded networks: From grid to random node positions. Neurocomputing, 70(10–12), 1833–1837.CrossRefGoogle Scholar
  64. Wallace, M. N., Kitzes, L. M., & Jones, E. G. (1991). Intrinsic inter- and intralaminar connections and their relationship to the tonotopic map in cat primary auditory cortex. Experimental Brain Research, 86(3), 527–544.Google Scholar
  65. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature, 393, 440–442.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nicole Voges
    • 1
    • 2
    • 4
    Email author
  • Christian Guijarro
    • 2
  • Ad Aertsen
    • 1
    • 2
  • Stefan Rotter
    • 1
    • 3
  1. 1.Bernstein Center for Computational Neuroscience FreiburgAlbert-Ludwig UniversityFreiburgGermany
  2. 2.Neurobiology & Biophysics, Faculty of BiologyAlbert-Ludwig UniversityFreiburgGermany
  3. 3.Computational Neuroscience, Faculty of BiologyAlbert-Ludwig UniversityFreiburgGermany
  4. 4.INSERMUMR 751 Universite Aix-MarseilleMarseille Cedex 05France

Personalised recommendations