Self-sustained asynchronous irregular states and Up–Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons

Article

Abstract

Randomly-connected networks of integrate-and-fire (IF) neurons are known to display asynchronous irregular (AI) activity states, which resemble the discharge activity recorded in the cerebral cortex of awake animals. However, it is not clear whether such activity states are specific to simple IF models, or if they also exist in networks where neurons are endowed with complex intrinsic properties similar to electrophysiological measurements. Here, we investigate the occurrence of AI states in networks of nonlinear IF neurons, such as the adaptive exponential IF (Brette-Gerstner-Izhikevich) model. This model can display intrinsic properties such as low-threshold spike (LTS), regular spiking (RS) or fast-spiking (FS). We successively investigate the oscillatory and AI dynamics of thalamic, cortical and thalamocortical networks using such models. AI states can be found in each case, sometimes with surprisingly small network size of the order of a few tens of neurons. We show that the presence of LTS neurons in cortex or in thalamus, explains the robust emergence of AI states for relatively small network sizes. Finally, we investigate the role of spike-frequency adaptation (SFA). In cortical networks with strong SFA in RS cells, the AI state is transient, but when SFA is reduced, AI states can be self-sustained for long times. In thalamocortical networks, AI states are found when the cortex is itself in an AI state, but with strong SFA, the thalamocortical network displays Up and Down state transitions, similar to intracellular recordings during slow-wave sleep or anesthesia. Self-sustained Up and Down states could also be generated by two-layer cortical networks with LTS cells. These models suggest that intrinsic properties such as adaptation and low-threshold bursting activity are crucial for the genesis and control of AI states in thalamocortical networks.

Keywords

Computational models Cerebral cortex Thalamus Thalamocortical system Intrinsic neuronal properties Network models 

References

  1. Avendaño, C., Rausell, E., Perez-Aguilar, D., & Isorna, S. (1988). Organization of the association cortical afferent connections of area 5: A retrograde tracer study in the cat. Journal of Comparative Neurology, 278, 1–33.CrossRefPubMedGoogle Scholar
  2. Avendaño, C., Rausell, E., & Reinoso-Suarez, F. (1985). Thalamic projections to areas 5a and 5b of the parietal cortex in the cat: A retrograde horseradish peroxidase study. Journal of Neuroscience, 5, 1446–1470.PubMedGoogle Scholar
  3. Baranyi, A., Szente, M. B., & Woody, C. D. (1993a). Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. I. Patterns of firing activity and synaptic responses. Journal of Neurophysiology, 69, 1850–1864.PubMedGoogle Scholar
  4. Baranyi, A., Szente, M. B., & Woody, C. D. (1993b). Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures. Journal of Neurophysiology, 69, 1865–1879.PubMedGoogle Scholar
  5. Binzegger, T., Douglas, R. J., & Martin, K. A. C. (2004). A quantitative map of the circuit of cat primary visual cortex. Journal of Neuroscience, 24, 8441–8453.CrossRefPubMedGoogle Scholar
  6. Borg-Graham, L. J., Monier, C., & Frégnac, Y. (1998). Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature, 393, 369–373.CrossRefPubMedGoogle Scholar
  7. Bourassa, J., & Deschênes, M. (1995). Corticothalamic projections from the primary visual cortex in rats: A single fiber study using biocytin as an anterograde tracer. Neuroscience, 66, 253–263.CrossRefPubMedGoogle Scholar
  8. Braitenberg, V., & Schüz, A. (1998). Cortex: Statistics and geometry of neuronal connectivity (2nd ed.). Berlin: Springer.Google Scholar
  9. Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94, 3637–3642.CrossRefPubMedGoogle Scholar
  10. Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.CrossRefPubMedGoogle Scholar
  11. Cessac, B. (2008). A discrete time neural network model with spiking neurons. Rigorous results on the spontaneous dynamics. Journal of Mathematical Biology, 56, 311–345.CrossRefPubMedGoogle Scholar
  12. Cessac, B., & Viéville, T. (2009). On dynamics of integrate-and-fire neural networks with conductance based synapses. Frontiers of Computer Neuroscience, 3, 1.Google Scholar
  13. Compte, A., Sanchez-Vives, M. V., McCormick, D. A., & Wang, X. J. (2003). Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89, 2707–2725.CrossRefPubMedGoogle Scholar
  14. Connors, B. W., & Gutnick, M. J. (1990). Intrinsic firing patterns of diverse neocortical neurons. Trends in Neurosciences, 13, 99–104.CrossRefPubMedGoogle Scholar
  15. Contreras, D., & Steriade, M. (1995). Cellular basis of EEG slow rhythms: A study of dynamic corticothalamic relationships. Journal of Neuroscience, 15, 604–622.PubMedGoogle Scholar
  16. Contreras, D., Timofeev, I., & Steriade, M. (1996). Mechanisms of long lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. Journal of Physiology, 494, 251–264.PubMedGoogle Scholar
  17. Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network UP states in the neocortex. Nature, 423, 283–238.CrossRefPubMedGoogle Scholar
  18. Crutchfield, J. P., & Kaneko, K. (1988). Are attractors relevant to turbulence? Physical Review Letters, 60, 2715–2718.CrossRefPubMedGoogle Scholar
  19. de la Peña, E., & Geijo-Barrientos, E. (1996). Laminar organization, morphology and physiological properties of pyramidal neurons that have the low-threshold calcium current in the guinea-pig frontal cortex. Journal of Neuroscience, 16, 5301–5311.PubMedGoogle Scholar
  20. Destexhe, A. (2007). High-conductance state. Scholarpedia, 2(11), 1341. http://www.scholarpedia.org/article/High-Conductance_State Google Scholar
  21. Destexhe, A., Contreras, D., & Steriade, M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of Neurophysiology, 79, 999–1016.PubMedGoogle Scholar
  22. Destexhe, A., Contreras, D., & Steriade, M. (2001). LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing, 38, 555–563.CrossRefGoogle Scholar
  23. Destexhe, A., & Paré, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81, 1531–1547.PubMedGoogle Scholar
  24. Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews Neuroscience, 4, 739–751.CrossRefPubMedGoogle Scholar
  25. Destexhe, A., & Sejnowski, T. J. (2003). Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiological Reviews, 83, 1401–1453.PubMedGoogle Scholar
  26. El Boustani, S., & Destexhe, A. (2009). A master equation formalism for macroscopic modeling of asynchronous irregular activity states. Neural Computation, 21, 46–100.CrossRefPubMedGoogle Scholar
  27. El Boustani, S., Pospischil, M., Rudolph-Lilith, M., & Destexhe, A. (2007). Activated cortical states: Experiments, analyses and models. Journal of Physiology (Paris), 101, 99–109.CrossRefGoogle Scholar
  28. FitzGibbon, T., Tevah, L. V., & Jervie-Sefton, A. (1995). Connections between the reticular nucleus of the thalamus and pulvinar-lateralis posterior complex: A WGA-HRP study. Journal of Comparative Neurology, 363, 489–504.CrossRefPubMedGoogle Scholar
  29. Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. Journal of Neuroscience, 23, 11628–11640.PubMedGoogle Scholar
  30. Freund, T. F., Martin, K. A., Soltesz, I., Somogyi, P., & Whitteridge, D. (1989). Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey. Journal of Comparative Neurology, 289, 315–336.CrossRefPubMedGoogle Scholar
  31. Grenier, F., Timofeev, I., & Steriade, M. (1998). Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. Proceedings of the National Academy of Sciences of the United States of America, 95, 13929–13934.CrossRefPubMedGoogle Scholar
  32. Hines, M. L. & Carnevale, N. T. (1997). The Neuron simulation environment. Neural Computation, 9, 1179–1209.CrossRefPubMedGoogle Scholar
  33. Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15, 1063–1070.CrossRefPubMedGoogle Scholar
  34. Jones, E. G. (1985). The thalamus. New York: Plenum.Google Scholar
  35. Kim, U., Sanches-Vives, M. V., & McCormick, D. A. (1997). Functional dynamics of GABAergic inhibition in the thalamus. Science, 278, 130–134.CrossRefPubMedGoogle Scholar
  36. Kumar, A., Schrader, S., Aertsen, A., & Rotter, S. (2008). The high-conductance state of cortical networks. Neural Computation, 20, 1–43.CrossRefPubMedGoogle Scholar
  37. Landry, P., & Deschênes, M. (1981). Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat. Journal of Comparative Neurology, 199, 345–371.CrossRefPubMedGoogle Scholar
  38. Lee, A. K., Manns, I. D., Sakmann, B., & Brecht, M. (2006). Whole-cell recordings in freely moving rats. Neuron, 51, 399–407.CrossRefPubMedGoogle Scholar
  39. Llinás, R. R. (1988). The intrinsic electrophysiological properties of mammalian neurons: A new insight into CNS function. Science, 242, 1654–1664.CrossRefPubMedGoogle Scholar
  40. Matsumura, M., Cope, T., & Fetz, E. E. (1988). Sustained excitatory synaptic input to motor cortex neurons in awake animals revealed by intracellular recording of membrane potentials. Experimental Brain Research, 70, 463–469.CrossRefGoogle Scholar
  41. McCormick, D. A. (1992). Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Progress in Neurobiology, 39, 337–388.CrossRefPubMedGoogle Scholar
  42. Minderhoud, J. M. (1971). An anatomical study of the efferent connections of the thalamic reticular nucleus. Experimental Brain Research, 112, 435–446.Google Scholar
  43. Paré, D., Shink, E., Gaudreau, H., Destexhe, A., & Lang, E. J. (1998). Impact of spontaneous synaptic activity on the resting properties of cat neocortical neurons in vivo. Journal of Neurophysiology, 79, 1450–1460.PubMedGoogle Scholar
  44. Parga, N., & Abbott, L. F. (2007). Network model of spontaneous activity exhibiting synchronous transitions between up and down states. Frontiers in Neuroscience, 1, 57–66.CrossRefPubMedGoogle Scholar
  45. Plenz, D., & Aertsen, A. (1996). Neural dynamics in cortex-striatum co-cultures II—spatiotemporal characteristics of neuronal activity. Neuroscience, 70, 893–924.CrossRefPubMedGoogle Scholar
  46. Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Frégnac, Y., et al. (2008). Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biological Cybernetics, 99, 427–441.CrossRefPubMedGoogle Scholar
  47. Rausell, E., & Jones, E. G. (1995). Extent of intracortical arborization of thalamocortical axons as a determinant of representational plasticity in monkey somatic sensory cortex. Journal of Neuroscience, 15, 4270–4288.PubMedGoogle Scholar
  48. Robertson, R. T., & Cunningham, T. J. (1981). Organization of corticothalamic projections from parietal cortex in cat. Journal of Comparative Neurology, 199, 569–585.CrossRefPubMedGoogle Scholar
  49. Rudolph, M., Pelletier, J.-G., Paré, D., & Destexhe, A. (2005). Characterization of synaptic conductances and integrative properties during electrically-induced EEG-activated states in neocortical neurons in vivo. Journal of Neurophysiology, 94, 2805–2821.CrossRefPubMedGoogle Scholar
  50. Rudolph, M., Pospischil, M., Timofeev, I., & Destexhe, A. (2007). Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. Journal of Neuroscience, 27, 5280–5290.CrossRefPubMedGoogle Scholar
  51. Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 10, 1027–1034.Google Scholar
  52. Sherman, S. M., & Guillery, R. W. (2001). Exploring the thalamus. New York: Academic.Google Scholar
  53. Smith, G. D., Cox, C. L., Sherman, M. & Rinzel, J. (2000). Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. Journal of Neurophysiology, 83, 588–610.PubMedGoogle Scholar
  54. Steriade, M. (2003). Neuronal substrates of sleep and epilepsy. Cambridge: Cambridge University Press.Google Scholar
  55. Steriade, M., Amzica, F., & Nunez, A. (1993a). Cholinergic and noradrenergic modulation of the slow (~0.3 Hz) oscillation in neocortical cells. Journal of Neurophysiology, 70, 1384–1400.Google Scholar
  56. Steriade, M., Deschênes, M., Domich, L., & Mulle, C. (1985). Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. Journal of Neurophysiology, 54, 1473–1497.PubMedGoogle Scholar
  57. Steriade, M., Nunez, A., & Amzica, F. (1993b). Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Journal of Neuroscience, 13, 3266–3283.PubMedGoogle Scholar
  58. Steriade, M., Timofeev, I., & Grenier, F. (2001). Natural waking and sleep states: A view from inside neocortical neurons. Journal of Neurophysiology, 85, 1969–1985.PubMedGoogle Scholar
  59. Tél, T., & Lai, Y.-C. (2008). Chaotic transients in spatially extended systems. Physics Reports, 460, 245–275.CrossRefGoogle Scholar
  60. Thomson, A. M., & Bannister, A. P. (2003). Interlaminar connections in the neocortex. Cerebral Cortex, 13, 5–14.CrossRefPubMedGoogle Scholar
  61. Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J., & Steriade, M. (2000). Origin of slow cortical oscillations in deafferented cortical slabs. Cerebral Cortex, 10, 1185–1199.CrossRefPubMedGoogle Scholar
  62. Updyke, B. V. (1981). Projections from visual areas of the middle suprasylvian sulcus onto the lateral posterior complex and adjacent thalamic nuclei in cat. Journal of Comparative Neurology, 201, 477–506.CrossRefPubMedGoogle Scholar
  63. Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25, 10786–10795.CrossRefPubMedGoogle Scholar
  64. von Krosigk, M., Bal, T., & McCormick, D. A. (1993). Cellular mechanisms of a synchronized oscillation in the thalamus. Science, 261, 361–364.CrossRefGoogle Scholar
  65. White, E. L. (1986). Termination of thalamic afferents in the cerebral cortex. In E. G. Jones & A. Peters (Eds.), Cerebral cortex (Vol. 5, pp. 271–289). New York: Plenum.Google Scholar
  66. White, E. L., & Hersch, S. M. (1982). A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic cells in mouse SmI cortex. Journal of Neurocytology, 11, 137–157.CrossRefPubMedGoogle Scholar
  67. Xiang, Z., Huguenard, J. R., & Prince, D. A. (1998). Cholinergic switching within neocortical inhibitory networks. Science, 281, 985–988.CrossRefPubMedGoogle Scholar
  68. Zillmer, R., Livi, R., Politi, A., & Torcini, A. (2006). Desynchronization in diluted neural networks. Physical Review E, 74, 036203.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Integrative and Computational Neuroscience Unit (UNIC)CNRSGif-sur-YvetteFrance

Personalised recommendations