Advertisement

Differences in biophysical properties of nucleus accumbens medium spiny neurons emerging from inactivation of inward rectifying potassium currents

  • John Eric Steephen
  • Rohit Manchanda
Article

Abstract

Inward rectifying potassium (KIR) currents in medium spiny (MS) neurons of nucleus accumbens inactivate significantly in ~40% of the neurons but not in the rest, which may lead to differences in input processing by these two groups. Using a 189-compartment computational model of the MS neuron, we investigate the influence of this property using injected current as well as spatiotemporally distributed synaptic inputs. Our study demonstrates that KIR current inactivation facilitates depolarization, firing frequency and firing onset in these neurons. These effects may be attributed to the higher input resistance of the cell as well as a more depolarized resting/down-state potential induced by the inactivation of this current. In view of the reports that dendritic intracellular calcium levels depend closely on burst strength and spike onset time, our findings suggest that inactivation of KIR currents may offer a means of modulating both excitability and synaptic plasticity in MS neurons.

Keywords

Medium spiny neuron Inward rectifying potassium current Inactivation 

Notes

Acknowledgements

We would like to thank John A. Wolf and Jason T. Moyer for their help in constructing the model, and Krishna Ramkumar for help with some of the simulations. Financial support for this work from the Department of Biotechnology, New Delhi (project no. BT/PR9599/Med/30/34/2007) and from IIT Bombay, as part of the cross disciplinary research group initiative (project no. 03/DG/002), is gratefully acknowledged.

Supplementary material

10827_2009_161_MOESM1_ESM.doc (116 kb)
ESM 1 Parameter estimation of KIR currents (DOC 116 kb)

References

  1. Armstrong, C. M., Bezanilla, F., & Rojas, E. (1973). Destruction of sodium conductance inactivation in squid axons perfused with pronase. The Journal of General Physiology, 62, 375–391. doi: 10.1085/jgp. 62.4.375.CrossRefPubMedGoogle Scholar
  2. Carnevale, N. T., & Hines, M. L. (2006). The NEURON Book. Cambridge: Cambridge University Press.Google Scholar
  3. Chung, S., & Kaczmarek, L. K. (1995). Modulation of the inactivation of voltage-dependent potassium channels by camp. The Journal of Neuroscience, 15, 3927–3935.PubMedGoogle Scholar
  4. Degtiar, V. E., Scheller, R. H., & Tsien, R. W. (2000). Syntaxin modulation of slow inactivation of N-type calcium channels. The Journal of Neuroscience, 20, 4355–4367.PubMedGoogle Scholar
  5. Ecobichon, D. J., & Joy, R. M. (1994). Pyrethrins and pyrethroid insecticides. In: Pesticides and neurological diseases. London: CRC Press.Google Scholar
  6. French, S. J., & Totterdell, S. (2002). Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus accumbens. The Journal of Comparative Neurology, 446(2), 151–165. doi: 10.1002/cne.10191.CrossRefPubMedGoogle Scholar
  7. French, S. J., & Totterdell, S. (2003). Individual nucleus accumbens-projection neurons receive both basolateral amygdala and ventral subicular afferents in rats. Neuroscience, 119, 19–31. doi: 10.1016/S0306-4522(03)00150-7.CrossRefPubMedGoogle Scholar
  8. Fuller, T. A., Russchen, F. T., & Price, J. L. (1987). Sources of presumptive glutamergic/aspartergic afferents to the rat ventral striatopallidal region. The Journal of Comparative Neurology, 258, 317–338. doi: 10.1002/cne.902580302.CrossRefPubMedGoogle Scholar
  9. Goto, Y., & Grace, A. A. (2008). Limbic and cortical information processing in the nucleus accumbens. Trends in Neurosciences, 31, 552–558. doi: 10.1016/j.tins.2008.08.002.CrossRefPubMedGoogle Scholar
  10. Haüsser, M., Spruston, N., & Stuart, G. J. (2000). Diversity and dynamics of dendritic signaling. Science, 290, 739–744. doi: 10.1126/science.290.5492.739.CrossRefPubMedGoogle Scholar
  11. Hayashi, H., & Fishman, H. M. (1988). Inward rectifier K+-channel kinetics from analysis of the complex conductance of aplysia neuronal membrane. Biophysical Journal, 53, 747–757. doi: 10.1016/S0006-3495(88)83155-2.CrossRefPubMedGoogle Scholar
  12. Heimer, L., Zahm, D. S., Churchill, L., Kalivas, W., & Wohltmann, C. (1991). Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience, 41, 89–125. doi: 10.1016/0306-4522(91)90202-Y.CrossRefPubMedGoogle Scholar
  13. Hille, B. (1992). Potassium channels and chloride channels. In: Ionic channels of excitable membranes (pp. 149–154). Sunderland, MA: Sinauer.Google Scholar
  14. Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179.CrossRefPubMedGoogle Scholar
  15. Ito, R., Robbins, T. W., & Everitt, B. J. (2004). Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nature Neuroscience, 7, 389–397. doi: 10.1038/nn1217.CrossRefPubMedGoogle Scholar
  16. Jung, H., Mickus, T., & Spruston, N. (1997). Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons. The Journal of Neuroscience, 17, 6639–6646.PubMedGoogle Scholar
  17. Kelley, A. E., & Swanson, C. J. (1997). Feeding induced by blockade of AMPA and kainate receptors within the ventral striatum: a microinfusion mapping study. Behavioural Brain Research, 89, 107–113. doi: 10.1016/S0166-4328(97)00054-5.CrossRefPubMedGoogle Scholar
  18. Kerr, J. N. D., & Plenz, D. (2002). Dendritic calcium encodes striatal neuron output during up-states. The Journal of Neuroscience, 22, 1499–1512.PubMedGoogle Scholar
  19. Kerr, J. N. D., & Plenz, D. (2004). Action potential timing determines dendritic calcium during striatal up-states. The Journal of Neuroscience, 24, 877–885. doi: 10.1523/JNEUROSCI.4475-03.2004.CrossRefPubMedGoogle Scholar
  20. Lu, Z. (2004). Mechanism of rectification in inward-rectifier K+ channels. Annual Review of Physiology, 66, 103–129. doi: 10.1146/annurev.physiol.66.032102.150822.CrossRefPubMedGoogle Scholar
  21. Magee, J. C. (1998). Dendritic hyperpolarization activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. The Journal of Neuroscience, 18, 7613–7624.PubMedGoogle Scholar
  22. Magee, J. C., & Carruth, M. (1999). Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. Journal of Neurophysiology, 82, 1895–1901.PubMedGoogle Scholar
  23. Mahon, S., Deniau, J., Charpier, S., & Delord, B. (2000). Role of a striatal slowly inactivating potassium current in short-term facilitation of corticostriatal inputs: a computer simulation study. Learning & Memory (Cold Spring Harbor, N.Y.), 7, 357–362. doi: 10.1101/lm.34800.Google Scholar
  24. Mahon, S., Vautrelle, N., Pezard, L., Slaght, S. J., Deniau, J., Chouvet, G., et al. (2006). Distinct patterns of striatal medium spiny neuron activity during the natural sleep–wake cycle. The Journal of Neuroscience, 26, 12587–12595. doi: 10.1523/JNEUROSCI.3987-06.2006.CrossRefPubMedGoogle Scholar
  25. Meredith, G. E., Baldo, B. A., Andrezjewski, M. E., & Kelley, A. E. (2008). The structural basis for mapping behavior onto the ventral striatum and its subdivisions. Brain Structure & Function, 213, 17–27. doi: 10.1007/s00429-008-0175-3.CrossRefGoogle Scholar
  26. Mermelstein, P. G., Song, W. J., Tkatch, T., Yan, Z., & Surmeier, D. J. (1998). Inwardly rectifying potassium (IRK) currents are correlated with IRK subunit expression in rat nucleus accumbens medium spiny neurons. The Journal of Neuroscience, 18, 6650–6661.PubMedGoogle Scholar
  27. Migliore, M., Hoffman, D. A., Magee, J. C., & Johnston, D. (1999). Role of an A-type K+ conductance in the backpropagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of Computational Neuroscience, 7, 5–515. doi: 10.1023/A:1008906225285.CrossRefPubMedGoogle Scholar
  28. Moyer, J. T., Wolf, J. A., & Finkel, L. H. (2007). Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron. Journal of Neurophysiology, 98, 3731–3748. doi: 10.1152/jn.00335.2007.CrossRefPubMedGoogle Scholar
  29. Nicola, S. M., Surmeier, D. J., & Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual Review of Neuroscience, 23, 185–215. doi: 10.1146/annurev.neuro.23.1.185.CrossRefPubMedGoogle Scholar
  30. O’Donnel, P., & Grace, A. A. (1993). Physiological and morphological properties of accumbens core and shell neurons recorded in vitro. Synapse (New York, N.Y.), 13, 125–160. doi: 10.1002/syn.890130206.Google Scholar
  31. Parkinson, J. A., Willoughby, P. J., Robbins, T. W., & Everitt, B. J. (2000). Disconnection of the anterior cingulate cortex and Nucleus Accumbens core impairs pavlovian approach behavior: further evidence for limbic cortical-ventral striatopallidal systems. Behavioral Neuroscience, 114, 42–63. doi: 10.1037//0735-7044.114.1.42.Google Scholar
  32. Peleg-Raibstein, D., & Feldon, J. (2006). Effects of dorsal and ventral hippocampal NMDA stimulation on nucleus accumbens core and shell dopamine release. Neuropharmacology, 51, 947–957. doi: 10.1016/j.neuropharm.2006.06.002.CrossRefPubMedGoogle Scholar
  33. Perez, M. F., White, F. J., & Hu, X. T. (2006). Dopamine D2 receptor modulation of K+ channel activity regulates excitability of nucleus accumbens neurons at different membrane potentials. Journal of Neurophysiology, 96, 2217–2228. doi: 10.1152/jn.00254.2006.CrossRefPubMedGoogle Scholar
  34. Poolos, N. P., Migliore, M., & Johnston, D. (2002). Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nature Neuroscience, 5, 767–774.PubMedGoogle Scholar
  35. Samuelsson, E., & Kotaleski, J. H. (2007). Exploring GABAergic and dopaminergic effects in a minimal model of a medium spiny projection neuron. Neurocomputing, 70, 1615–1618. doi: 10.1016/j.neucom.2006.10.045.CrossRefGoogle Scholar
  36. Segev, I., & Burke, R. E. (1998). Compartmental models of complex neurons. In Methods in neuronal modeling: from ions to networks (2nd ed. pp. 93–136), C. Koch & I. Segev (Eds.), Cambridge, MA: MIT Press.Google Scholar
  37. Sesack, S. R., Deutch, A. Y., Roth, R. H., & Bunney, B. S. (1989). Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with phaseolus vulgaris leucoagglutinin. The Journal of Comparative Neurology, 290, 213–242.Google Scholar
  38. Steephen, J. E., & Manchanda, R. (2007). Differences in biophysical properties of nucleus accumbens medium spiny neurons emerging from inactivation of inward rectifying potassium currents. BMC Neuroscience, 8(Suppl 2), 116. doi: 10.1186/1471-2202-8-S2-P116. Abstract.CrossRefGoogle Scholar
  39. Steephen, J. E., & Manchanda, R. (2008). Modulation of synaptically induced burst strength and spike onset timing by inactivating KIR currents in medium spiny neurons. BMC Neuroscience, 9(Suppl 1), 57. doi: 10.1186/1471-2202-9-S1-P57. Abstract.CrossRefGoogle Scholar
  40. Stratford, T. R., & Kelley, A. E. (1997). GABA in the Nucleus Accumbens Shell Participates in the Central Regulation of Feeding Behavior. The Journal of Neuroscience, 17, 4434–4440.PubMedGoogle Scholar
  41. Taverna, S., van Dongen, Y. C., Groenewegen, H. J., & Pennartz, C. M. (2004). Direct physiological evidence for synaptic connectivity between medium-sized spiny neurons in rat nucleus accumbens in situ. Journal of Neurophysiology, 91, 1111–1121. doi: 10.1152/jn.00892.2003.CrossRefPubMedGoogle Scholar
  42. Umemia, M., & Raymond, L. A. (1997). Dopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons. Journal of Neurophysiology, 78, 1248–1255.Google Scholar
  43. Voorn, P., Vandershuren, L. J. M. J., Groenewegen, H. J., Robbins, T. W., & Pennartz, C. M. A. (2004). Putting a spin on the dorsal–ventral divide of the striatum. Trends in Neurosciences, 27(8), 468–474. doi: 10.1016/j.tins.2004.06.006.CrossRefPubMedGoogle Scholar
  44. Watanabe, S., Hoffman, D. A., Migliore, M., & Johnston, D. (2002). Dendritic K+ channels contribute to spike-timing dependent long term potentiation in hippocampal pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 99, 8366–8371. doi: 10.1073/pnas.122210599.CrossRefPubMedGoogle Scholar
  45. Wilson, C. J. (1992). Dendritic morphology, inward rectification, and the functional properties of neostriatal neurons. In T. McKenna, J. Davis & S. Zornetzer (Eds.), Single neuron computation (pp. 141–171). San Diego, CA: Academic.Google Scholar
  46. Wilson, C. J., & Kawaguchi, Y. (1996). The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. The Journal of Neuroscience, 16, 2397–2410.PubMedGoogle Scholar
  47. Wolf, J. A., Schroeder, L. F., & Finkel, L. H. (2001). Computational modeling of medium spiny projection neurons in nucleus accumbens: toward the cellular mechanisms of afferent stream integration. Proceedings of the IEEE, 89, 1083–1092. doi: 10.1109/5.939824.CrossRefGoogle Scholar
  48. Wolf, J. A., Moyer, J. T., Lazarewicz, M. T., Contreras, D., Benoit-Marand, M., O’Donnel, P., et al. (2005). NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. The Journal of Neuroscience, 25, 9080–9095. doi: 10.1523/JNEUROSCI.2220-05.2005.CrossRefPubMedGoogle Scholar
  49. Yasumoto, S., Tanaka, E., Hattori, G., Maeda, H., & Higashi, H. (2002). Direct and indirect actions of dopamine on the membrane potential in medium spiny neurons of the mouse neostriatum. Journal of Neurophysiology, 87, 1234–1243.Google Scholar
  50. Zahm, D. S. (1999). Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Annals of the New York Academy of Sciences, 877, 113–128. doi: 10.1111/j.1749-6632.1999.tb09264.x.CrossRefPubMedGoogle Scholar
  51. Zahm, D. S. (2000). An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neuroscience and Biobehavioral Reviews, 24, 84–105. doi: 10.1016/S0149-7634(99)00065-2.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Biosciences and BioengineeringIndian Institute of Technology BombayPowai, MumbaiIndia

Personalised recommendations