Journal of Computational Neuroscience

, Volume 26, Issue 2, pp 159–170 | Cite as

The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics

  • John R. CressmanJr.
  • Ghanim Ullah
  • Jokubas Ziburkus
  • Steven J. Schiff
  • Ernest Barreto
Article

Abstract

In these companion papers, we study how the interrelated dynamics of sodium and potassium affect the excitability of neurons, the occurrence of seizures, and the stability of persistent states of activity. In this first paper, we construct a mathematical model consisting of a single conductance-based neuron together with intra- and extracellular ion concentration dynamics. We formulate a reduction of this model that permits a detailed bifurcation analysis, and show that the reduced model is a reasonable approximation of the full model. We find that competition between intrinsic neuronal currents, sodium-potassium pumps, glia, and diffusion can produce very slow and large-amplitude oscillations in ion concentrations similar to what is seen physiologically in seizures. Using the reduced model, we identify the dynamical mechanisms that give rise to these phenomena. These models reveal several experimentally testable predictions. Our work emphasizes the critical role of ion concentration homeostasis in the proper functioning of neurons, and points to important fundamental processes that may underlie pathological states such as epilepsy.

Keywords

Potassium dynamics Bifurcation Glia Seizures Instabilities 

References

  1. Amzica, F., Massimini, M., & Manfridi, A. (2002). A spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. The Journal of Neuroscience, 22, 1042–1053.PubMedGoogle Scholar
  2. Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2004). Potassium model for slow (2-3 Hz) in vivo neocortical paroxysmal oscillations. Journal of Neurophysiology, 92, 1116–1132. doi:10.1152/jn.00529.2003.PubMedCrossRefGoogle Scholar
  3. Bikson, M., Hahn, P. J., Fox, J. E., & Jefferys, J. G. R. (2003). Depolarization block of neurons during maintenance of electrographic seizures. Journal of Neurophysiology, 90(4), 2402–2408. doi:10.1152/jn.00467.2003.PubMedCrossRefGoogle Scholar
  4. Cressman, J. R., Ullah, G., Ziburkus, J., Schiff, S. J., & Barreto, E. (2008). Ion concentration dynamics: mechanisms for bursting and seizing. BMC Neuroscience, 9(Suppl 1), O9. doi:10.1186/1471-2202-9-S1-O9.CrossRefGoogle Scholar
  5. Dumortier, F., & Roussarie, R. (1996). Canard cycles and center manifolds. Memoirs of the American Mathematical Society, 121(577), 1–100.Google Scholar
  6. Ermentrout, G. B. (2002). Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. Philadelphia: Society for Industrial and Applied Mathematics.Google Scholar
  7. Feng, Z., & Durand, D. M. (2006). Effects of potassium concentration on firing patterns of low-calcium epileptiform activity in anesthetized rat hippocampus: inducing of persistent spike activity. Epilepsia, 47(4), 727–736. doi:10.1111/j.1528-1167.2006.00499.x.PubMedCrossRefGoogle Scholar
  8. Fisher, R. S., Pedley, T. A., & Prince, D. A. (1976). Kinetics of potassium movement in norman cortex. Brain Research, 101(2), 223–237. doi:10.1016/0006-8993(76)90265-1.PubMedCrossRefGoogle Scholar
  9. Frankenhaeuser, B., & Hodgkin, A. L. (1956). The after-effects of impulses in the giant nerve fibers of loligo. The Journal of Physiology, 131, 341–376.PubMedGoogle Scholar
  10. Frohlich, F., Timofeev, I., Sejnowski, T. J., & Bazhenov, M. (2008). Extracellular potassium dynamics and epileptogenesis. In: I. Soltesz, & K. Staley (eds.), Computational Neuroscience in Epilepsy (p. 419).Google Scholar
  11. Gluckman, B. J., Nguyen, H., Weinstein, S. L., & Schiff, S. J. (2001). Adaptive electric field control of epileptic seizures. The Journal of Neuroscience, 21(2), 590–600.PubMedGoogle Scholar
  12. Heinemann, U., Lux, H. D., & Gutnick, M. J. (1977). Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Experimental Brain Research, 27, 237–243. doi:10.1007/BF00235500.CrossRefGoogle Scholar
  13. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.PubMedGoogle Scholar
  14. Jensen, M. S., & Yaari, Y. (1997). Role of intrinsic burs firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. Journal of Neurophysiology, 77, 1224–1233.PubMedGoogle Scholar
  15. Kager, H., Wadman, W. J., & Somjen, G. G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84, 495–512.PubMedGoogle Scholar
  16. Kager, H., Wadman, W. J., & Somjen, G. G. (2007). Seizure-like after discharges simulated in a model neuron. Journal of Computational Neuroscience, 22, 105–108. doi:10.1007/s10827-006-0001-y.PubMedCrossRefGoogle Scholar
  17. Kepler, T. B., Abbott, L. F., & Mardner, E. (1992). Reduction of conductance-based neuron models. Biological Cybernetics, 66, 381–387. doi:10.1007/BF00197717.PubMedCrossRefGoogle Scholar
  18. Kuschinsky, W., Wahl, M., Bosse, O., & Thurau, K. (1972). The dependency of the pial arterial and arteriolar resistance on the perivascular H+ and K+ conconcentrations. A micropuncture Study. European Neurology, 6(1), 92–5.CrossRefGoogle Scholar
  19. Lauger, P. (1991). Electrogenic ion pumps. Sunderland, MA: Sinauer.Google Scholar
  20. Mason, A., & Larkman, A. (1990). Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology. The Journal of Neuroscience, 10(5), 1415–1428.PubMedGoogle Scholar
  21. Mazel, T., Simonova, Z., & Sykova, E. (1998). Diffusion heterogeneity and anisotropy in rat hippocampus. Neuroreport, 9(7), 1299–1304. doi:10.1097/00001756-199805110-00008.PubMedCrossRefGoogle Scholar
  22. McBain, C. J. (1994). Hippocampal inhibitory neuron activity in the elevated potassium model of epilepsy. Journal of Neurophysiology, 72, 2853–2863.PubMedGoogle Scholar
  23. McBain, C. J., Traynelis, S. F., & Dingledine, R. (1990). Regional variation of extracellular space in the hippocampus. Science, 249(4969), 674–677. doi:10.1126/science.2382142.PubMedCrossRefGoogle Scholar
  24. McCulloch, J., Edvinsson, L., & Watt P. (1982). Comparison of the effects of potassium and pH on the caliber of cerebral veins and arteries. Pflugers Archiv, 393(1), 95–8PubMedCrossRefGoogle Scholar
  25. Moody, W. J., Futamachi, K. J., & Prince, D. A. (1974). Extracellular potassium activity during epileptogenesis. Experimental Neurology, 42, 248–263. doi:10.1016/0014-4886(74)90023-5.PubMedCrossRefGoogle Scholar
  26. Park, E., & Durand, D. M. (2006). Role of potassium lateral diffusion in non-synaptic epilepsy: A computational study. Journal of Theoretical Biology, 238, 666–682. doi:10.1016/j.jtbi.2005.06.015.PubMedCrossRefGoogle Scholar
  27. Paulson, O. B., & Newman, E. A. (1987). Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science, 237(4817), 896–898. doi:10.1126/science.3616619.PubMedCrossRefGoogle Scholar
  28. Pinsky, P. F., & Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. Journal of Computational Neuroscience, 1, 39–60. doi:10.1007/BF00962717.PubMedCrossRefGoogle Scholar
  29. Ransom, C. B., Ransom, B. R., & Sotheimer, H. (2000). Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. The Journal of Physiology, 522, 427–442. doi:10.1111/j.1469-7793.2000.00427.x.PubMedCrossRefGoogle Scholar
  30. Rinzel, J. (1985). Excitation dynamics: insights from simplified membrane models. Federation Proceedings, 44, 2944–2946.PubMedGoogle Scholar
  31. Rinzel, J., & Ermentrout, B. (1989). Analysis of neuronal excitability and oscillations, in “Methods in neuronal modeling: From synapses to networks”, Koch, C., & Segev, I. MIT Press, revised (1998).Google Scholar
  32. Rutecki, P. A., Lebeda, F. J., & Johnston, D. (1985). Epileptiform activity induced by changes in extracellular potassium in hippocampus. Journal of Neurophysiology, 54, 1363–1374.PubMedGoogle Scholar
  33. Scharrer, E. (1944). The blood vessels of the nervous tissue. The Quarterly Review of Biology, 19(4), 308–318. doi:10.1086/394698.CrossRefGoogle Scholar
  34. Somjen, G. G. (2004). Ions in the Brain. New York: Oxford University Press.Google Scholar
  35. Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos. MA: Addison-Wesley, Reading.Google Scholar
  36. Traynelis, S. F., & Dingledine, R. (1988). Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. Journal of Neurophysiology, 59, 259–276.PubMedGoogle Scholar
  37. Ullah, G., Cressman, J. R., Barreto, E., & Schiff, S. J. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics. Journal of Computational Neuroscience doi:10.1007/s10827-008-0130-6.
  38. Wang, X. J. (1999). Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. The Journal of Neuroscience, 19(21), 9587–9603.PubMedGoogle Scholar
  39. Wechselberger, M. (2007). Scholarpedia, 2(4), 1356.Google Scholar
  40. Ziburkus, J., Cressman, J. R., Barreto, E., & Schiff, S. J. (2006). Interneuron and pyramidal cell interplay during in vitro seizure-like events. Journal of Neurophysiology, 95, 3948–3954. doi:10.1152/jn.01378.2005.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • John R. CressmanJr.
    • 1
  • Ghanim Ullah
    • 2
  • Jokubas Ziburkus
    • 3
  • Steven J. Schiff
    • 2
    • 4
  • Ernest Barreto
    • 1
  1. 1.Department of Physics and Astronomy, The Center for Neural Dynamics, and The Krasnow Institute for Advanced StudyGeorge Mason UniversityFairfaxUSA
  2. 2.Center for Neural Engineering, Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Biology and BiochemistryThe University of HoustonHoustonUSA
  4. 4.Departments of Neurosurgery and PhysicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations