Journal of Computational Neuroscience

, Volume 26, Issue 2, pp 171–183 | Cite as

The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics

  • Ghanim Ullah
  • John R. Cressman Jr.
  • Ernest Barreto
  • Steven J. Schiff


In these companion papers, we study how the interrelated dynamics of sodium and potassium affect the excitability of neurons, the occurrence of seizures, and the stability of persistent states of activity. We seek to study these dynamics with respect to the following compartments: neurons, glia, and extracellular space. We are particularly interested in the slower time-scale dynamics that determine overall excitability, and set the stage for transient episodes of persistent oscillations, working memory, or seizures. In this second of two companion papers, we present an ionic current network model composed of populations of Hodgkin–Huxley type excitatory and inhibitory neurons embedded within extracellular space and glia, in order to investigate the role of micro-environmental ionic dynamics on the stability of persistent activity. We show that these networks reproduce seizure-like activity if glial cells fail to maintain the proper micro-environmental conditions surrounding neurons, and produce several experimentally testable predictions. Our work suggests that the stability of persistent states to perturbation is set by glial activity, and that how the response to such perturbations decays or grows may be a critical factor in a variety of disparate transient phenomena such as working memory, burst firing in neonatal brain or spinal cord, up states, seizures, and cortical oscillations.


Neuronal networks Instability Glia buffering Seizures Persistent activity 



We thank Jokubas Ziburkus, Andrew J Trevelyan, Maxim Bazhenov, and Partha Mitra, for their valuable discussions. This work was funded by NIH Grants K02MH01493 (SJS), R01MH50006 (SJS, GU), F32NS051072 (JRC), and CRCNS-R01MH079502 (EB).


  1. Amzica, F., Massimini, M., & Manfridi, A. (2002). Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. Journal of Neuroscience, 22(3), 1042–1053.PubMedGoogle Scholar
  2. Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2004). Potassium model for slow (2–3 Hz) in vivo neocortical paroxysmal oscillations. Journal of Neurophysiology, 92, 1116–1132.PubMedCrossRefGoogle Scholar
  3. Bikson, M., Hahn, P. J., Fox, J. E., & Jefferys, J. G. R. (2003). Depolarization block of neurons during maintenance of electrographic seizures. Journal of Neurophysiology, 90(4), 2402–2408.PubMedCrossRefGoogle Scholar
  4. Chub, N., Mentis, Z. G., & O’Donovan, J. M. (2006). Chloride-sensitive MEQ fluorescence in chick embryo motoneurons following manipulations of chloride and during spontaneous network activity. Journal of Neurophysiology, 95, 323–330.PubMedCrossRefGoogle Scholar
  5. Compte, A., Brunel, N., Goldman-Rakic, P. S., & Wang, X. J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10(9), 910–923.PubMedCrossRefGoogle Scholar
  6. Cressman, J. R., Ullah, G., Ziburkus, J., Schiff, S. J., & Barreto, E. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. Journal of Computational Neuroscience. doi: 10.1007/s10827-008-0132-4.
  7. Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Neurocomputational models of working memory. Nature Neuroscience, 3, 1184–1191.PubMedCrossRefGoogle Scholar
  8. Fellin, T., Gomez-Gonzalo, M., Gobbo, S., Carmignoto, G., & Haydon, P. G. (2006). Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. Journal of Neuroscience, 26(36), 9312–9322.PubMedCrossRefGoogle Scholar
  9. Fisher, R. S., Pedley, T. A., & Prince, D. A. (1976). Kinetics of potassium movement in norman cortex. Brain Research, 101(2), 223–237.PubMedCrossRefGoogle Scholar
  10. Forster, D. (1990). Hydrodynamic fluctuations, broken symmetry, and correlation. Boulder: Westview.Google Scholar
  11. Frohlich, F., Timofeev, I., Sejnowski, T. J., & Bazhenov, M. (2008). Extracellular potassium dynamics and epileptogenesis. In I. Soltesz, & K. Staley (Eds.), Computational neuroscience in epilepsy. Amsterdam: Academic.Google Scholar
  12. Fujiwara-Tsukamoto, Y., Isomura, Y., Kaneda, K., & Takada, M. (2004). Synaptic interactions between pyramidal cells and interneuron subtypes during seizure-like activity in the rat hippocampus. Journal of Physiology, 557(3), 961–979.PubMedCrossRefGoogle Scholar
  13. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61(2), 331–349.PubMedGoogle Scholar
  14. Fuster, J. M. (1995). Memory in the cerebral cortex. Cambridge: MIT.Google Scholar
  15. Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477–485.PubMedCrossRefGoogle Scholar
  16. Gutkin, B. S., Laing, C. R., Colby, C. L., Chow, C. C., & Ermentrout, G. B. (2001). Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity. Journal of Computational Neuroscience, 11(2), 121–134.PubMedCrossRefGoogle Scholar
  17. Heinemann, U., Gabriel, S., Jauch, R., Schulze, K., Kivi, A., Eilers, A., et al. (2000). Alterations of glial cell function in temporal lobe epilepsy. Epilepsia, 41(Suppl. 6), S185–S189.PubMedCrossRefGoogle Scholar
  18. Hinterkeuser, S., Schroder, W., Hager, G., Seifert, G., Blumcke, I., Elger, C. E., et al. (2000). Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. European Journal of Neuroscience, 12(6), 2087–2096.PubMedCrossRefGoogle Scholar
  19. Huang, X., Troy, W. C., Yang, Q., Ma, H., Laing, C. R., Schiff, S. J., et al. (2004). Spiral waves in disinhibited mammalian neocortex. Journal of Neuroscience, 24, 9897–9902.PubMedCrossRefGoogle Scholar
  20. Kager, H., Wadman, J. W., & Somjen, G. G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84, 495–512.PubMedGoogle Scholar
  21. Kager, H., Wadman, J. W., & Somjen, G. G. (2007). Seizure-like afterdischarges simulated in a model neuron. Journal of Computational Neuroscience, 22, 105–128.PubMedCrossRefGoogle Scholar
  22. Kang, N., Xu, J., Xu, Q., Nedergaard, M., & Kang, J. (2005). Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. Journal of Neurophysiology, 94(6), 4121–4130.PubMedCrossRefGoogle Scholar
  23. Konnerth, A., Heinemann, U., & Yaari, Y. (1984). Slow transmission of neural activity in hippocampal area CA1 in absence of active chemical synapses. Nature, 307, 69–71.PubMedCrossRefGoogle Scholar
  24. Leinekugel, X., Khazipov, R., Cannon, R., Hirase, H., Ben-Ari, Y., & Buzsaki, G. (2002). Correlated bursts of activity in the neonatal hippocampus in vivo. Science, 298(5575), 2049–2052.CrossRefGoogle Scholar
  25. Marder, E., & Prinz, A. A. (2002). Modulating stability in neuron and network function: The role of activity in homeostasis. BioEssays, 24, 1145–1154.PubMedCrossRefGoogle Scholar
  26. Mason, A., & Larkman, A. (1990). Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology. Journal of Neuroscience, 10(5), 1415–1428.PubMedGoogle Scholar
  27. Mazel, T., Simonova, Z., & Sykova, E. (1998). Diffusion heterogeneity and anisotropy in rat hippocampus. Neuroreport, 9(7), 1299–1304.PubMedCrossRefGoogle Scholar
  28. McBain, C. J., Traynelis, S. F., & Dingledine, R. (1990). Regional variation of extracellular space in the hippocampus. Science, 249(4969), 674–677.PubMedCrossRefGoogle Scholar
  29. McCormick, D. A., Shu, Y., Hasenstaub, A., Sanchez-Vives, M., Badoual, M., & Bal, T. (2003). Persistent cortical activity: Mechanisms of generation and effects on neuronal excitability. Cerebral Cortex, 13, 1219–1231.PubMedCrossRefGoogle Scholar
  30. Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16(16), 5154–5167.PubMedGoogle Scholar
  31. Miller, P., Brody, C. D., Romo, R., & Wang, X. J. (2003). A recurrent network model of somatosensory parametric working memory in the prefrontal cortex. Cerebral Cortex, 13, 1208–1218.PubMedCrossRefGoogle Scholar
  32. Murray, J. D. (2003). Mathematical Biology II: Spatial models and biomedical applications. New York: Springer.Google Scholar
  33. Nadkarni, S., & Jung, P. (2003). Spontaneous oscillations of dressed neurons: A new mechanism for epilepsy? Physical Review Letters, 91(268101), 1–4.Google Scholar
  34. Netoff, T. I., & Schiff, S. J. (2002). Decreased neuronal synchronization during experimental seizures. Journal of Neuroscience, 22, 7297–7307.PubMedGoogle Scholar
  35. Oberheim, N. A., Tian, G. F., Han, X., Peng, W., Takano, T., Ransom, B., et al. (2008). Loss of astrocytic domain organization in the epileptic brain. Journal of Neuroscience, 28(13), 3264–3276.PubMedCrossRefGoogle Scholar
  36. Parpura, V., & Haydon, P. G. (2000). Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proceedings of the National Academy of Sciences of the United States of America, 97, 8629–8634.PubMedCrossRefGoogle Scholar
  37. Parpura, V., Basarsky, T. A., Liu, F., Jeftinija, K., Jeftinija, S., & Haydon, P. G. (1994). Glutamate-mediated astrocyte–neuron signalling. Nature, 369(6483), 744–747.PubMedCrossRefGoogle Scholar
  38. Perez-Velazquez, J. L., & Carlen, P. L. (1999). Synchronization of GABAergic interneuronal networks during seizure-like activity in the rat horizontal hippocampal slice. European Journal of Neuroscience, 11, 4110–4118.CrossRefGoogle Scholar
  39. Pinto, D. J., Patrick, S. L., Huang, W. C., & Connors, B. W. (2005). Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. Journal of Neuroscience, 25(36), 8131–8140.PubMedCrossRefGoogle Scholar
  40. Rainer, G., Asaad, W. F., & Miller, E. K. (1998). Memory fields of neurons in the primate prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 95, 15008–15013.PubMedCrossRefGoogle Scholar
  41. Romo, R., Brody, C. D., Hernandez, A., & Lemus, L. (1999). Neuronal correlates of parametric working memory in the prefrontal cortex. Nature, 399(6735), 470–473.PubMedCrossRefGoogle Scholar
  42. Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3, 1027–1034.PubMedCrossRefGoogle Scholar
  43. Schiff, S. J., Sauer, T., Kumar, R., & Weinstein, S. L. (2005). Neuronal spatiotemporal pattern discrimination: The dynamical evolution of seizures. NeuroImage, 28, 1043–1055.PubMedCrossRefGoogle Scholar
  44. Shu, Y., Hasenstaub, A., & McCormick, D. A. (2003). Turning on and off recurrent balanced cortical activity. Nature, 423(6937), 288–293.PubMedCrossRefGoogle Scholar
  45. Soltesz, I., & Staley, K. (2008). Computational neuroscience in epilepsy. Amsterdam: Academic.Google Scholar
  46. Somjen, G. G. (2004). Ions in the brain: normal function, seizures, and stoke. Oxford: Oxford University Press.Google Scholar
  47. Tian, G. F., Azmi, H., Takano, T., Xu, Q., Peng, W., Lin, J., et al. (2005). An astrocytic basis of epilepsy. Nature Medicine, 11(9), 973–981.PubMedGoogle Scholar
  48. Trevelyan, A. J., Sussillo, D., Watson, B. O., & Yuste, R. (2006). Modular propagation of epileptiform activity: Evidence for an inhibitory veto in neocortex. Journal of Neuroscience, 26(48), 12447–12455.PubMedCrossRefGoogle Scholar
  49. Turrigiano, G. G. (2008). The self-tuning neuron: Synaptic scaling of excitatory synapses. Cell, 135, 422–435.PubMedCrossRefGoogle Scholar
  50. Van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274(5293), 1724–1726.PubMedCrossRefGoogle Scholar
  51. Vogels, T. P., Rajan, K., & Abbott, L. F. (2005). Neural network dynamics. Annual Review of Neuroscience, 28, 357–376.PubMedCrossRefGoogle Scholar
  52. Wang, X. J. (1998). Calcium coding and adaptive temporal computation in cortical pyramidal neurons. Journal of Neurophysiology, 79(3), 1549–1566.PubMedGoogle Scholar
  53. Wang, X. J. (1999). Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. Journal of Neuroscience, 19(21), 9587–9603.PubMedGoogle Scholar
  54. Wang, X. J. (2003). Persistent neuronal activity: Experiments and theory. Cerebral Cortex, 13, 1123.PubMedCrossRefGoogle Scholar
  55. Ziburkus, J., Cressman, J. R., Barreto, E., & Schiff, S. J. (2006). Interneuron and pyramidal cell interplay during in vitro seizure-like events. Journal of Neurophysiology, 95, 3948–3954.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ghanim Ullah
    • 1
  • John R. Cressman Jr.
    • 2
  • Ernest Barreto
    • 2
  • Steven J. Schiff
    • 1
    • 3
  1. 1.Center for Neural Engineering, Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Physics and Astronomy, The Center for Neural Dynamics, and The Krasnow Institute for Advanced StudyGeorge Mason UniversityFairfaxUSA
  3. 3.Departments of Neurosurgery and PhysicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations