Journal of Computational Neuroscience

, Volume 27, Issue 1, pp 103–114 | Cite as

Solving the brain synchrony eigenvalue problem: conservation of temporal dynamics (fMRI) over subjects doing the same task



Brain measures often show highly structured temporal dynamics that synchronize when observers are doing the same task. The standard method for analysis of brain imaging signals (e.g. fMRI) uses the GLM for each voxel indexed against a specified experimental design but does not explicitly involve temporal dynamics. Consequently, the design variables that determine the functional brain areas are those correlated with the design variation rather than the common or conserved brain areas across subjects with the same temporal dynamics given the same stimulus conditions. This raises an important theoretical question: Are temporal dynamics conserved across individuals experiencing the same stimulus task? This general question can be framed in a dynamical systems context and further be posed as an eigenvalue problem about the conservation of synchrony across all brains simultaneously. We show that solving the problem results in a non-arbitrary measure of temporal dynamics across brains that scales over any number of subjects, stabilizes with increasing sample size, and varies systematically across tasks and stimulus conditions.


Neuroimaging Time series Eigenvalue Event perception Synchrony Temporal dynamics Inter-subject-correlation 


  1. Bartels, A., & Zeki, S. (2005). The chronoarchitecture of the cerebral cortex. Philosophical Transactions of the Royal Society B, 360, 733–750. doi:10.1098/rstb.2005.1627.CrossRefGoogle Scholar
  2. Beckmann, C. F., & Smith, S. M. (2005). Tensorial extensions of independent component analysis for multisubject FMRI analysis. NeuroImage, 25, 294–311.PubMedCrossRefGoogle Scholar
  3. Bullmore, E. T., Long, C., Suckling, J., et al. (2001). Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Human Brain Mapping, 12, 61–78.PubMedCrossRefGoogle Scholar
  4. Buzsaki, G. (2006). Rhythms of the brain. New York: Oxford.CrossRefGoogle Scholar
  5. Chen, C.-C., Tyler, C. W., & Baseler, H. A. (2003). Statistical properties of BOLD magnetic resonance activity in the human brain. NeuroImage, 20, 1096–1109.PubMedCrossRefGoogle Scholar
  6. Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modeling. NeuroImage, 19(4), 1273–1302.PubMedCrossRefGoogle Scholar
  7. Glover, G. H. (1999). Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage, 9(4), 416–429.PubMedCrossRefGoogle Scholar
  8. Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nature Reviews. Neuroscience, 2(10), 685–694. doi:10.1038/35094500.PubMedCrossRefGoogle Scholar
  9. Hanson, S. J., & Bly, B. M. (2001). The distribution of BOLD susceptibility effects in the brain is non-Gaussian. Neuroreport, 12, 1971–1977.PubMedCrossRefGoogle Scholar
  10. Hanson, C., & Hanson, S. J. (1996). Development of schemata during event parsing: Neisser’s perceptual cycle as a recurrent connectionist network. Journal of Cognitive Neuroscience, 8, 119–134.CrossRefGoogle Scholar
  11. Hanson, C., & Hirst, W. (1989). On the representation of events: A study of orientation, recall, and recognition. Journal of Experimental Psychology. General, 118(2), 136–147. doi:10.1037/0096-3445.118.2.136.PubMedCrossRefGoogle Scholar
  12. Hanson, S. J., & Timberlake, W. (1983). Regulation during challenge: A general model of learned performance under environmental constraint. Psychological Review, 90(3), 261–282.CrossRefGoogle Scholar
  13. Hanson, S. J., Hanson, C., Halchenko, Y., Matsuka, T., & Zaimi, A. (2007). Bottom–up and top–down brain functional connectivity underlying comprehension of everyday visual action. Brain Structure and Function, 212(3–4), 231–244.PubMedCrossRefGoogle Scholar
  14. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject synchronization of cortical activity during natural vision. Science, 303(5664), 1634–1640.PubMedCrossRefGoogle Scholar
  15. Heider, F., & Simmel, M. (1944). An experimental study of apparent behaviour. The American Journal of Psychology, 57(2), 243–259.CrossRefGoogle Scholar
  16. Hejnar, M. R., Kiehl, K. A., & Calhoun, V. D. (2007). Interparticipant correlations: a model free FMRl analysis technique. Human Brain Mapping, 28(9), 860–867.PubMedCrossRefGoogle Scholar
  17. Kelso, J. A. (1995). Dynamic patterns: The Self-organization of brain and behavior. Boston: MIT Press.Google Scholar
  18. Menon, R. S., Luknowsky, D. C., & Gati, J. S. (1998). Mental chronometry using latency-resolved functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 95, 10902–10907.PubMedCrossRefGoogle Scholar
  19. Pillai, K. C. S. (1965). On the distribution of the largest characteristic root of a matrix in multivariate analysis. Biometrika, 52(3/4), 405–414.CrossRefGoogle Scholar
  20. Shimizu, Y., Bart, M., Windischberger, C., Moser, E., & Thurner, S. (2004). Wavelet-based multifractal analysis of fMRI time series. NeuroImage, 22(3), 1195–1202.PubMedCrossRefGoogle Scholar
  21. Zacks, J. M., & Tversky, B. (2001). Event structure in perception and conception. Psychological Bulletin, 127(1), 3–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Psychology Department, Rutgers Mind/Brain Analysis (RUMBA) LabsRutgers UniversityNewarkUSA

Personalised recommendations