# Voltage-stepping schemes for the simulation of spiking neural networks

- 106 Downloads
- 6 Citations

## Abstract

The numerical simulation of spiking neural networks requires particular attention. On the one hand, time-stepping methods are generic but they are prone to numerical errors and need specific treatments to deal with the discontinuities of integrate-and-fire models. On the other hand, event-driven methods are more precise but they are restricted to a limited class of neuron models. We present here a voltage-stepping scheme that combines the advantages of these two approaches and consists of a discretization of the voltage state-space. The numerical simulation is reduced to a *local* event-driven method that induces an implicit activity-dependent time discretization (time-steps automatically increase when the neuron is slowly varying). We show analytically that such a scheme leads to a high-order algorithm so that it accurately approximates the neuronal dynamics. The voltage-stepping method is generic and can be used to simulate any kind of neuron models. We illustrate it on nonlinear integrate-and-fire models and show that it outperforms time-stepping schemes of Runge-Kutta type in terms of simulation time and accuracy.

## Keywords

Voltage-stepping Event-driven Time-stepping Spiking neural networks## Notes

### Acknowledgement

Research supported by the INRIA cooperative research initiative RDNR.

## References

- Ambard, M., & Martinez, D. (2006). Inhibitory control of spike timing precision.
*NeuroComputing, 70*, 200–205.CrossRefGoogle Scholar - Ariav, G., Polsky, A., & Schiller, J. J. (2003). Submillisecond precision of the input–output transformation function mediated by fast sodium dendritic spikes in basal dendrites of ca1 pyramidal neurons.
*Journal of Neuroscience, 23*, 7750–7758.PubMedGoogle Scholar - Bair, W., & Koch, C. (1996). Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey.
*Neural Computation, 8*, 1185–1202.PubMedCrossRefGoogle Scholar - Breiman, L. (1993). Hinging hyperplanes for regression, classification, and function approximation.
*IEEE Transactions on Information Theory, 39*, 999–1013.CrossRefGoogle Scholar - Brette, R. (2006). Exact simulation of integrate-and-fire models with synaptic conductances.
*Neural Computation, 18*, 2004–2027.PubMedCrossRefGoogle Scholar - Brette, R. (2007). Exact simulation of integrate-and-fire models with exponential currents.
*Neural Computation, 19*, 2604–2609.PubMedCrossRefGoogle Scholar - Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity.
*Journal of Neurophysiology, 94*, 3637–3642.PubMedCrossRefGoogle Scholar - Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., Diesmann, M., Morrison, A., Goodman, P. H., Harris, F. C., Zirpe, M., Natschlager, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A. P., El Boustani, S., & Destexhe, A. (2007). Simulation of networks of spiking neurons: A review of tools and strategies.
*Journal of Computational Neuroscience, 23*, 349–398.PubMedCrossRefGoogle Scholar - Brunel, N., & Latham, P. (2003). Firing rate of the noisy quadratic integrate-and-fire neuron.
*Neural Computation, 15*, 2281–2306.PubMedCrossRefGoogle Scholar - Della-Dora, J., Maignan, A., Mirica-Ruse, M., & Yovine, S. (2001). Hybrid computation.
*ISSAC’01*.Google Scholar - DeWeese, M., Wehr, M., & Zador, A. (2003). Binary spiking in auditory cortex.
*Journal of Neuroscience, 23*, 7940–7949.PubMedGoogle Scholar - Ermentrout, G. B. (1996). Type i membranes, phase resetting curves, and synchrony.
*Neural Computation, 6*, 979–1001.CrossRefGoogle Scholar - Ermentrout, G. B., & Kopell, N. (1986). Parabolic bursting in an excitable system coupled with a slow oscillation.
*SIAM Journal of Applied Mathematics, 46*, 233–253.CrossRefGoogle Scholar - Foldiak, P., & Young, M. (1995). Sparse coding in the primate cortex. In M. Arbib (Ed.),
*The handbook of brain theory and neural networks*(pp. 895–898). Cambridge: MIT.Google Scholar - Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs.
*Journal of Neuroscience, 23*, 11628–11640.PubMedGoogle Scholar - Girard, A. (2002). Approximate solutions of odes using piecewise linear vector fields.
*5th international workshop on computer algebra in scientific computing*.Google Scholar - Hansel, D., & Mato, G. (2001). Existence and stability of persistent states in large neuronal networks.
*Physical Review Letters, 10*, 4175–4178.CrossRefGoogle Scholar - Hansel, D., Mato, G., Meunier, C., & Neltner, L. (1998). On the numerical simulations of integrate-and-fire networks.
*Neural Computation, 10*, 467.PubMedCrossRefGoogle Scholar - Hubbard, J., & West, B. (1991). Differential equations: A dynamical systems approach. In
*Texts in applied mathematics*(vol. 5). New York: Springer.Google Scholar - Izhikevich, E. (2003). Simple model of spiking neurons.
*IEEE Transactions on Neural Networks, 14*, 1569–1572.PubMedCrossRefGoogle Scholar - Lytton, W., & Hines, M. (2005). Independent variable time-step integration of individual neurons for network simulations.
*Neural Computation, 17*, 903–921.PubMedCrossRefGoogle Scholar - Mainen, Z., & Sejnowski, T. (1995). Reliability of spike timing in neocortical neurons.
*Science, 1503*, 268.Google Scholar - Makino, T. (2003). A discrete-event neural network simulator for general neuron models.
*Neural Computing and Applications, 11*, 210–223.CrossRefGoogle Scholar - Martinez, D. (2005). Oscillatory synchronization requires precise and balanced feedback inhibition in a model of the insect antennal lobe.
*Neural Computation, 17*, 2548–2570.CrossRefGoogle Scholar - Mattia, M., & Del Giudice, P. (2000). Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses.
*Neural Computation, 12*, 2305.PubMedCrossRefGoogle Scholar - McKean, H. P. (1970). Nagumo’s equation.
*Advances in Mathematics, 4*, 209–223.CrossRefGoogle Scholar - Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2007). Exact subthreshold integration with continuous spike times in discrete time neural network simulations.
*Neural Computation, 19*, 44–79.Google Scholar - Perez-Orive, J., Mazor, O., Turner, G. C., Cassenaer, S., Wilson, R. I., & Laurent, G. (2002). Oscillations and sparsening of odor representations in the mushroom body.
*Science, 297*, 359–365.PubMedCrossRefGoogle Scholar - Rangan, V. A., & Cai, D. (2007). Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks.
*Journal of Computational Neuroscience, 22*, 81–100.PubMedCrossRefGoogle Scholar - Richardson, M. J. E. (2004). Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons.
*Physical Review E, 69*, 051918.CrossRefGoogle Scholar - Rinzel, J., & Ermentrout, B. (1998). Analysis of sneural excitability. In C. Koch, & I. Segev (Eds.),
*Methods in neuronal modeling: From ions to networks*(pp. 251–291). Cambridge: MIT.Google Scholar - Rochel, O., & Martinez, D. (2003). An event-driven framework for the simulation of networks of spiking neurons.
*Proc. 11th European symposium on artificial neural networks*.Google Scholar - Ros, E., Carrillo, R., Ortigosa, E. M., Barbour, B., & Agis, R. (2006). Event-driven simulation scheme of spiking neural networks using lookup tables to characterize neuronal dynamics.
*Neural Computation, 18*, 2959–2993.PubMedCrossRefGoogle Scholar - Rudolph, M., & Destexhe, A. (2006). Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies.
*Neural Computation, 18*, 2305.Google Scholar - Shelley, M. J., & Tao, L. (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks.
*Journal of Computational Neuroscience, 11*, 111–119.PubMedCrossRefGoogle Scholar - Tonnelier, A., & Gerstner, W. (2003). Piecewise linear differential equations and integrate-and-fire neurons: Insights from two-dimensional membrane models.
*Physical Review E, 67*, 021908.CrossRefGoogle Scholar - Tonnelier, A., Belmabrouk, H., & Martinez, D. (2007). Event driven simulation of nonlinear integrate-and-fire neurons.
*Neural Computation, 19*, 3226–3238.PubMedCrossRefGoogle Scholar - VanRullen, R., Guyonneau, R., & Thorpe, S. J. (2005). Spike times make sense.
*Trends in Neurosciences, 28*, 1–4.PubMedCrossRefGoogle Scholar - Wang, X., & Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model.
*Journal of Neuroscience, 16*, 6402–6413.PubMedGoogle Scholar