Journal of Computational Neuroscience

, Volume 26, Issue 2, pp 219–249 | Cite as

Virtual Retina: A biological retina model and simulator, with contrast gain control

  • Adrien Wohrer
  • Pierre KornprobstEmail author


We propose a new retina simulation software, called Virtual Retina, which transforms a video into spike trains. Our goal is twofold: Allow large scale simulations (up to 100,000 neurons) in reasonable processing times and keep a strong biological plausibility, taking into account implementation constraints. The underlying model includes a linear model of filtering in the Outer Plexiform Layer, a shunting feedback at the level of bipolar cells accounting for rapid contrast gain control, and a spike generation process modeling ganglion cells. We prove the pertinence of our software by reproducing several experimental measurements from single ganglion cells such as cat X and Y cells. This software will be an evolutionary tool for neuroscientists that need realistic large-scale input spike trains in subsequent treatments, and for educational purposes.


Large-scale retina simulator Contrast gain control Spikes Conductances 



Many thanks to Thierry Viéville for his enthusiasm, and his involvement in defining the early tracks of this research. We are especially thankful to the reviewers, who helped to improve the biological plausibility of this contribution. This work was partially supported by the EC IP project FP6-015879, FACETS.


  1. Baccus, S., & Meister, M. (2002). Fast and slow contrast adaptation in retinal circuitry. Neuron, 36(5), 909–919.PubMedCrossRefGoogle Scholar
  2. Bálya, D., Roska, B., Roska, T., & Werblin, F. S. (2002). A CNN framework for modeling parallel processing in a mammalian retina. International Journal of Circuit Theory and Applications, 30(2–3), 363–393.CrossRefGoogle Scholar
  3. Barlow, H. B. (1953). Action potentials from the frog’s retina. Journal of Physiology, 119(1), 58–68.PubMedGoogle Scholar
  4. Beaudoin, D. L., Borghuis, B. G., & Demb, J. B. (2007). Cellular basis for contrast gain control over the receptive field center of mammalian retinal ganglion cells. Journal of Neuroscience, 27, 2636–2645.PubMedCrossRefGoogle Scholar
  5. Bernadete, E. A., & Kaplan, E. (1999). Dynamics of primate P retinal ganglion cells: Responses to chromatic and achromatic stimuli. Journal of Physiology, 519(3), 775–790.CrossRefGoogle Scholar
  6. Bernadete, E. A., Kaplan, E., & Knight, B. W. (1992). Contrast gain control in the primate retina: P cells are not X-like, some M cells are. Visual Neuroscience, 8(5), 483–486.CrossRefGoogle Scholar
  7. Berry, M. J., Warland, D. K., & Meister, M. (1997). The structure and precision of retinal spike trains. Proceedings of the National Academy of Sciences of the United States of America, 94, 5411–5416.PubMedCrossRefGoogle Scholar
  8. Bonin, V., Mante, V., & Carandini, M. (2005). The suppressive field of neurons in lateral geniculate nucleus. Journal of Neuroscience, 25(47), 10844–10856, November.PubMedCrossRefGoogle Scholar
  9. Cai, D., Deangelis, G. C., & Freeman, D. (1997). Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. Journal of Neurophysiology, 78(2), 1045–1061, August.PubMedGoogle Scholar
  10. Carandini, M., Demb, J. B., Mante, V., Tollhurst, D. J., Dan, Y., Olshausen, B. A., et al. (2005). Do we know what the early visual system does? Journal of Neuroscience, 25(46), 10577–10597, November.PubMedCrossRefGoogle Scholar
  11. Chichilnisky, E. J. (2001). A simple white noise analysis of neuronal light responses. Network: Computation in Neural Systems, 12, 199–213.CrossRefGoogle Scholar
  12. Chichilnisky, E. J., & Kalmar, R. S. (2002). Functional asymmetries in ON and OFF ganglion cells of primate retina. Journal of Neuroscience, 22(7), 2737–2747, April.PubMedGoogle Scholar
  13. Connaughton, V. P., & Maguire, G. (1998). Differential expression of voltage-gated K+ and Ca2+ currents in bipolar cells in the zebrafish retinal slice. European Journal of Neuroscience, 10(4), 1350–1362, April.PubMedCrossRefGoogle Scholar
  14. Croner, L. J., & Kaplan, E. (1995). Receptive fields of P and M ganglion cells across the primate retina. Vision Research, 35(1), 7–24, January.PubMedCrossRefGoogle Scholar
  15. Dacey, D., Packer, O. S., Diller, L., Brainard, D., Peterson, B., & Lee, B. (2000). Center surround receptive field structure of cone bipolar cells in primate retina. Vision Research, 40, 1801–1811.PubMedCrossRefGoogle Scholar
  16. Dacey, D., & Petersen, M. (1992). Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proceedings of the National Academy of Sciences, 89, 9666–9670.CrossRefGoogle Scholar
  17. Delorme, A., Gautrais, J., VanRullen, R., & Thorpe, S. J. (1999). Spikenet: A simulator for modeling large networks of integrate and fire neurons. Neurocomputing, 26, 989–996.CrossRefGoogle Scholar
  18. Demb, J. B., Zaghloul, K., Haarsma, L., & Sterling, P. (2001). Bipolar cells contribute to nonlinear spatial summation in the brisk-transient (Y) ganglion cell in mammalian retina. Journal of Neuroscience, 21(19), 7447–7454, October.PubMedGoogle Scholar
  19. Dhingra, N. K., & Smith, R. G. (2004). Spike generator limits efficiency of information transfer in a retinal ganglion cell. Journal of Neuroscience, 24, 2914–2922.PubMedCrossRefGoogle Scholar
  20. Enroth-Cugell, C., & Freeman, A. W. (1987). The receptive-field spatial structure of cat retinal Y cells. Journal of Physiology, 384(1), 49–79.PubMedGoogle Scholar
  21. Enroth-Cugell, C., & Robson, J. G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology, 187, 517–552.PubMedGoogle Scholar
  22. Enroth-Cugell, C., Robson, J. G., Schweitzer-Tong, D. E., & Watson, A. B. (1983). Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation. Journal of Physiology, 341, 279–307.PubMedGoogle Scholar
  23. Euler, T., & Masland, R. H. (2000). Light-evoked responses of bipolar cells in a mammalian retina. Journal of Neurophysiology, 83(4), 1817–1829, April.PubMedGoogle Scholar
  24. Flores-Herr, N., Protti, D. A., & Wässle, H. (2001). Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina. Journal of Neuroscience, 21(13), 4852–4863, July.PubMedGoogle Scholar
  25. Gazeres, N., Borg-Graham, L., & Fregnac, Y. (1998). A phenomenological model of visually evoked spike trains in cat geniculate nonlagged X-cells. Visual Neuroscience, 15, 1157–1174.PubMedCrossRefGoogle Scholar
  26. Gollisch, T., & Meister, M. (2008). Rapid neural coding in the retina with relative spike latencies. Science, 319, 1108–1111. doi:10.1126/science.1149639.PubMedCrossRefGoogle Scholar
  27. Gonzalez, R. C., & Woods, R. E. (1992). Digital image processing, 3rd edn. Redwood City: Addison Wesley.Google Scholar
  28. Hartveit, E., & Heggelund, P. (1994). Response variability of single cells in the dorsal lateral geniculate nucleus of the cat. Comparison with retinal input and effect of brain stem stimulation. Journal of Neurophysiology, 72(3), 1278–1289.PubMedGoogle Scholar
  29. Hennig, M. H., Funke, K., & Wörgötter, F. (2002). The influence of different retinal subcircuits on the nonlinearity of ganglion cell behavior. Journal of Neuroscience, 22(19), 8726–8738, October.PubMedGoogle Scholar
  30. Herault, J. (1996). A model of colour processing in the retina of vertebrates: From photoreceptors to colour opposition and colour constancy phenomena. Neurocomputing, 12, 113–129.CrossRefGoogle Scholar
  31. Hérault, J., & Durette, B. (2007). Modeling visual perception for image processing. In F. Sandoval, A. Prieto, J. Cabestany, M. Gra na, (Eds.), Computational and ambient intelligence : 9th international work-conference on artificial neural networks, IWANN 2007 (pp. 662–675). Springer.Google Scholar
  32. Hochstein, S., & Shapley, R. M. (1976). Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. Journal of Physiology, 262, 265–284.PubMedGoogle Scholar
  33. Jacobs, A. L., & Werblin, F. S. (1998). Spatiotemporal patterns at the retinal output. Journal of Neurophysiology, 80(1), 447–451, July.PubMedGoogle Scholar
  34. Kaplan, E., & Bernadete, E. (2001). The dynamics of primate retinal ganglion cells. Progress in Brain Research, 134, 1–18.CrossRefGoogle Scholar
  35. Kara, P., Reinagel, P., & Reid, R. C. (2000). Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 27(3), 635–646. Poisson, retina, spike variability.PubMedCrossRefGoogle Scholar
  36. Keat, J., Reinagel, P., Reid, R. C., & Meister, M. (2001). Predicting every spike: A model for the responses of visual neurons. Neuron, 30, 803–817.PubMedCrossRefGoogle Scholar
  37. Kenyon, G. T., & Marshak, D. W. (1998). Gap junctions with amacrine cells provide a feedback pathway for ganglion cells within the retina. Proceedings of the Royal Society B, 265(1399), 919–925, May.PubMedCrossRefGoogle Scholar
  38. Kenyon, G. T., Theiler, J., George, J. S., Travis, B. J., & Marshak, D. W. (2004). Correlated firing improves stimulus discrimination in a retinal model. Neural Computation, 16, 2261–2291.PubMedCrossRefGoogle Scholar
  39. Kim, K. J., & Rieke, F. (2001). Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. Journal of Neuroscience, 21(1), 287–299, January.PubMedGoogle Scholar
  40. Kim, K. J., & Rieke, F. (2003). Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells. Journal of Neuroscience, 23(4), 1506–1516, February.PubMedGoogle Scholar
  41. Kolb, H., Fernandez, E., & Nelson, R. (2001). Webvision: The organization of the retina and visual system.
  42. Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37–68.PubMedGoogle Scholar
  43. Lamb, T. D. (1976). Spatial properties of horizontal cell responses in the turtle retina. Journal of Physiology, 263(2), 239–55.PubMedGoogle Scholar
  44. Lesica, N. A., & Stanley, G. B. (2004). Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. Journal of Neuroscience, 24(47), 10731–10740.PubMedCrossRefGoogle Scholar
  45. Lohmiller, W., & Slotine, J. J. (1998). On contraction analysis for non-linear systems. Automatica, 34(6), 683–696, June.CrossRefGoogle Scholar
  46. McMahon, M. J., Lankheet, M. J. M., Lennie, P., & Williams, D. R. (2000). Fine structure of parvocellular receptive fields in the primate fovea revealed by laser interferometry. Journal of Neuroscience, 20(5), 2043–2053, March.PubMedGoogle Scholar
  47. McMahon, M. J., Packer, O. S., & Dacey, D. M. (2004). The classical receptive field surround of primate Parasol ganglion cells is mediated primarily by a non-GABAergic pathway. Journal of Neuroscience, 24(15), 3736–3745, April.PubMedCrossRefGoogle Scholar
  48. Mahowald, M. A., & Mead, C. (1991). The silicon retina. Scientific American, 264(5), 76–82.PubMedCrossRefGoogle Scholar
  49. Manookin, M., & Demb, J. (2006). Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron, 50(3), 453–464.PubMedCrossRefGoogle Scholar
  50. Mao, B. U. Q., Macleish, P. R., & Victor, J. D. (1998). The intrinsic dynamics of retinal bipolar cells isolated from tiger salamander. Visual Neuroscience, 15(3), 425–438.PubMedCrossRefGoogle Scholar
  51. Marmarelis, P. Z., & Naka, K. (1972). White-noise analysis of a neuron chain, an application of the Wiener theory. Science, 175(4027), 1276–1278, March.PubMedCrossRefGoogle Scholar
  52. Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews Neuroscience, 5, 229–240.PubMedCrossRefGoogle Scholar
  53. Masland, R. (2001). The fundamental plan of the retina. Nature Neuroscience, 4(9), 877–886, September.PubMedCrossRefGoogle Scholar
  54. Naka, K. I., & Rushton, W. A. (1967). The generation and spread of s-potentials in fish (cyprinidae). Journal of Physiology, 192(2), 437–61, September.PubMedGoogle Scholar
  55. Nawy, S. (2000). Regulation of the On bipolar cell mGluR6 pathway by Ca2+. Journal of Neuroscience, 20(12), 4471.PubMedGoogle Scholar
  56. Neuenschwander, S., & Singer, W. (1996). Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature, 379(6567), 728–732, February.PubMedCrossRefGoogle Scholar
  57. Nirenberg, S., & Meister, M. (1997). The light response of retinal ganglion cells is truncated by a displaced amacrine circuit. Neuron, 18, 637–650.PubMedCrossRefGoogle Scholar
  58. O’Brien, B. J., Isayama, T., Richardson, R., & Berson, D. M. (2002). Intrinsic physiological properties of cat retinal ganglion cells. Journal of Physiology, 538(3), 787–802.PubMedCrossRefGoogle Scholar
  59. Polans, A., Baehr, W., & Palczewski, K. (1996). Turned on by Ca2 + ! The physiology and pathology of Ca2 + -binding proteins in the retina. Trends in Neurosciences, 19(12), 547–554, December.PubMedCrossRefGoogle Scholar
  60. Raviola, E., & Gilula, N. B. (1973). Gap junctions between photoreceptor cells in the vertebrate retina. Proceedings of the National Academy of Sciences, 70(6), 1677–1681, June.CrossRefGoogle Scholar
  61. Rieke, F. (2001). Temporal contrast adaptation in salamander bipolar cells. Journal of Neuroscience, 21(23), 9445–9454, December.PubMedGoogle Scholar
  62. Roska, B., & Werblin, F. (2001). Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature, 410, 583–7, March.PubMedCrossRefGoogle Scholar
  63. Van Rullen, R., & Thorpe, S. (2001). Rate coding versus temporal order coding: What the retina ganglion cells tell the visual cortex. Neural Computing, 13(6), 1255–1283.CrossRefGoogle Scholar
  64. Schnapf, J. L., Nunn, B. J., Meister, M., & Baylor, D. A. (1990). Visual transduction in cones of the monkey macaca fascicularis. Journal of Physiology, 427(1), 681–713.PubMedGoogle Scholar
  65. Shapley, R. M., & Victor, J. D. (1978). The effect of contrast on the transfer properties of cat retinal ganglion cells. Journal of Physiology, 285(1), 275–298.PubMedGoogle Scholar
  66. Shiells, R. A., & Falk, G. (1999). A rise in intracellular Ca2+ underlies light adaptation in dogfish retinal ‘on’ bipolar cells. Journal of Physiology, 514(2), 343–350.PubMedCrossRefGoogle Scholar
  67. Solomon, S. G., Peirce, J. W., Dhruv, N. T., & Lennie, P. (2004). Profound contrast adaptation early in the visual pathway. Neuron, 42, 155–162, April.PubMedCrossRefGoogle Scholar
  68. Tan, S., Dale, J., & Johnston, A. (2003). Performance of three recursive algorithms for fast space-variant gaussian filtering. Real-Time Imaging, 9, 215–228.CrossRefGoogle Scholar
  69. Valeton, J. M., & Van Norren, D. (1983). Light adaptation of primate cones : An analysis based on extracellular data. Vision Research, 23(12), 1539–1547.PubMedCrossRefGoogle Scholar
  70. van Hateren, J. H., & Lamb, T. D. (2006). The photocurrent response of human cones is fast and monophasic. BMC Neuroscience, 7(1), 34–41.PubMedCrossRefGoogle Scholar
  71. van Hateren, J. H., Rüttiger, L., Sun, H., & Lee, B. B. (2002). Processing of natural temporal stimuli by macaque retinal ganglion cells. Journal of Neuroscience, 22(22), 9945–9960.PubMedGoogle Scholar
  72. Victor, J. D. (1987). The dynamics of the cat retinal X cell centre. Journal of Physiology, 386(1), 219–246.PubMedGoogle Scholar
  73. Werblin, F. S., & Dowling, J. E. (1969). Organization of the retina of the mudpuppy. Journal of Neurophysiology, 32(3), 339–355.PubMedGoogle Scholar
  74. Wohrer, A. (2007). Mathematical study of a neural gain control mechanism. Research report 6327, INRIA.Google Scholar
  75. Wohrer, A. (2008a). Model and large-scale simulator of a biological retina with contrast gain control. PhD thesis, University of Nice Sophia-Antipolis.Google Scholar
  76. Wohrer, A. (2008b). The vertebrate retina: A functional review. Research Report 6532, INRIA, May.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Odyssée project team (INRIA/ENPC/ENS)INRIA, Sophia-AntipolisSophia AntipolisFrance

Personalised recommendations