A computational modelling approach to investigate different targets in deep brain stimulation for Parkinson’s disease

  • Marco Pirini
  • Laura Rocchi
  • Mariachiara Sensi
  • Lorenzo ChiariEmail author


We investigated by a computational model of the basal ganglia the different network effects of deep brain stimulation (DBS) for Parkinson’s disease (PD) in different target sites in the subthalamic nucleus (STN), the globus pallidus pars interna (GPi), and the globus pallidus pars externa (GPe). A cellular-based model of the basal ganglia system (BGS), based on the model proposed by Rubin and Terman (J Comput Neurosci 16:211–235, 2004), was developed. The original Rubin and Terman model was able to reproduce both the physiological and pathological activities of STN, GPi, GPe and thalamo-cortical (TC) relay cells. In the present study, we introduced a representation of the direct pathway of the BGS, allowing a more complete framework to simulate DBS and to interpret its network effects in the BGS. Our results suggest that DBS in the STN could functionally restore the TC relay activity, while DBS in the GPe and in the GPi could functionally over-activate and inhibit it, respectively. Our results are consistent with the experimental and the clinical evidences on the network effects of DBS.


Computational model Basal ganglia Parkinson’s disease Deep brain stimulation 



The authors would like to thank Jonathan E. Rubin from the University of Pittsburgh and David Terman from the Ohio State University for their help in implementing their model, Mauro Ursino and Stefano Severi from the University of Bologna for helpful discussions on network and single-cell models, and two anonymous reviewers for their precious hints and suggestions.


  1. Albin, R. L., Young, A. B., & Penney, J. B. (1995). The functional-anatomy of disorders of the basal ganglia. Trends in Neurosciences, 18, 63–64.PubMedCrossRefGoogle Scholar
  2. Anderson, M. E., Postupna, N., & Ruffo, M. (2003). Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. Journal of Neurophysiology, 89, 1150–1160.PubMedCrossRefGoogle Scholar
  3. Anderson, V. C., Burchiel, K. J., Hogarth, P., Favre, J., & Hammerstad, J. P. (2005). Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Archives of Neurology, 62, 554–560.PubMedCrossRefGoogle Scholar
  4. Bar-Gad, I., Morris, G., & Bergman, H. (2003). Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Progress in Neurobiology, 71, 439–473.PubMedCrossRefGoogle Scholar
  5. Beiser, D. G., Hua, S. E., & Houk, J. C. (1997). Network models of the basal ganglia. Current Opinion in Neurobiology, 7, 185–190.PubMedCrossRefGoogle Scholar
  6. Benabid, A. L., Benazzous, A., & Pollak, P. (2002). Mechanisms of deep brain stimulation. Movement Disorders, 17, S73–S74.PubMedCrossRefGoogle Scholar
  7. Bergman, H., & Deuschl, G. (2002). Pathophysiology of Parkinson’s disease: From clinical neurology to basic neuroscience and back. Movement Disorders, 17, S28–S40.PubMedCrossRefGoogle Scholar
  8. Berns, G. S., & Sejnowski, T. J. (1998). A computational model of how the basal ganglia produce sequences. Journal of Cognitive Neuroscience, 10, 108–121.PubMedCrossRefGoogle Scholar
  9. Brown, J. W., Bullock, D., & Grossberg, S. (2004). How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Networks, 17, 471–510.PubMedCrossRefGoogle Scholar
  10. Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. Journal of Neuroscience, 21, 1033–1038.PubMedGoogle Scholar
  11. Burchiel, K. J., Anderson, V. C., Favre, J., & Hammerstad, J. P. (1999). Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson’s disease: Results of a randomized, blinded pilot study. Neurosurgery, 45, 1375–1382.PubMedCrossRefGoogle Scholar
  12. Defebvre, L. J. P., Krystkowiak, P., Blatt, J. L., Duhamel, A., Bourriez, J. L., Perina, M., et al. (2002). Influence of pallidal stimulation and levodopa on gait and preparatory postural adjustments in Parkinson’s disease. Movement Disorders, 17, 76–83.PubMedCrossRefGoogle Scholar
  13. Delong, M. R. (1990). Primate models of movement-disorders of basal ganglia origin. Trends in Neurosciences, 13, 281–285.PubMedCrossRefGoogle Scholar
  14. DeLong, M. R., & Wichmann, T. (2007). Circuits and circuit disorders of the basal ganglia. Archives of Neurology, 64, 20–24.PubMedCrossRefGoogle Scholar
  15. Dostrovsky, J. O., & Lozano, A. M. (2002). Mechanisms of deep brain stimulation. Movement Disorders, 17, S63–S68.PubMedCrossRefGoogle Scholar
  16. Faist, M., Xie, J., Kurz, D., Berger, W., Maurer, C., Pollak, P., & Lucking, C. H. (2001). Effect of bilateral subthalamic nucleus stimulation on gait in Parkinson’s disease. Brain, 124, 1590–1600.PubMedCrossRefGoogle Scholar
  17. Feng, X. J., Shea-Brown, E., Greenwald, B., Kosut, R., & Rabitz, H. (2007). Optimal deep brain stimulation of the subthalamic nucleus—A computational study. Journal of Computational Neuroscience, 23, 265–282.PubMedCrossRefGoogle Scholar
  18. Ferrarin, M., Rizzone, M., Lopiano, L., Recalcati, M., & Pedotti, A. (2004). Effects of subthalamic nucleus stimulation and l-dopa in trunk kinematics of patients with Parkinson’s disease. Gait & Posture, 19, 164–171.CrossRefGoogle Scholar
  19. Follett, K., Weaver, F., Stern, M., Marks, W., Hogarth, P., Holloway, K., Bronstein, J., Duda, J., Horn, S., & Lai, E. (2005). Multisite randomized trial of deep brain stimulation. Archives of Neurology, 62, 1643–1644.PubMedCrossRefGoogle Scholar
  20. Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. Journal of Neuroscience, 23, 1916–1923.PubMedGoogle Scholar
  21. Humphries, M. D., Stewart, R. D., & Gurney, K. N. (2006). A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. Journal of Neuroscience, 26, 12921–12942.PubMedCrossRefGoogle Scholar
  22. Kita, H., Tachibana, Y., Nambu, A., & Chiken, S. (2005). Balance of monosynaptic excitatory and disynaptic inhibitory responses of the globus pallidus induced after stimulation of the subthalamic nucleus in the monkey. Journal of Neuroscience, 25, 8611–8619.PubMedCrossRefGoogle Scholar
  23. Krack, P., Pollak, P., Limousin, P., Benazzouz, A., Deuschl, G., & Benabid, A. L. (1999). From off-period dystonia to peak-dose chorea—The clinical spectrum of varying subthalamic nucleus activity. Brain, 122, 1133–1146.PubMedCrossRefGoogle Scholar
  24. Leblois, A., Boraud, T., Meissner, W., Bergman, H., & Hansel, D. (2006). Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. Journal of Neuroscience, 26, 3567.PubMedCrossRefGoogle Scholar
  25. Lewis, M. M., Slagle, C. G., Smith, A. B., Truong, Y., Bai, P., McKeown, M. J., et al. (2007). Task specific influences of Parkinson’s disease on the striato-thalamo-cortical and cerebello-thalamo-cortical motor circuitries. Neuroscience, 147, 224–235.PubMedCrossRefGoogle Scholar
  26. Lozano, A. M., Dostrovsky, J., Chen, R., & Ashby, P. (2002). Deep brain stimulation for Parkinson’s disease: Disrupting the disruption. Lancet Neurology, 1, 225–231.PubMedCrossRefGoogle Scholar
  27. Maurer, C., Mergner, T., Xie, J., Faist, M., Pollak, P., & Lucking, C. H. (2003). Effect of chronic bilateral subthalamic nucleus (STN) stimulation on postural control in Parkinson’s disease. Brain, 126, 1146–1163.PubMedCrossRefGoogle Scholar
  28. McIntyre, C. C., Grill, W. M., Sherman, D. L., & Thakor, N. V. (2004). Cellular effects of deep brain stimulation: Model-based analysis of activation and inhibition. Journal of Neurophysiology, 91, 1457–1469.PubMedCrossRefGoogle Scholar
  29. Mink, J. W. (1996). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381–425.PubMedCrossRefGoogle Scholar
  30. Montgomery Jr, E. B., & Baker, K. B. (2000). Mechanisms of deep brain stimulation and future technical developments. Neurological Research, 22, 259–266.Google Scholar
  31. Nambu, A. (2004). A new dynamic model of the cortico-basal ganglia loop. Progress in Brain Research, 143, 461–466.PubMedCrossRefGoogle Scholar
  32. Ogura, M., & Kita, H. (2000). Dynorphin exerts both postsynaptic and presynaptic effects in the globus pallidus of the rat. Journal of Neurophysiology, 83, 3366–3376.PubMedGoogle Scholar
  33. Okun, M. S., & Foote, K. D. (2005). Subthalamic nucleus vs globus pallidus interna deep brain stimulation, the rematch will pallidal deep brain stimulation make a triumphant return? Archives of Neurology, 62, 533–536.PubMedCrossRefGoogle Scholar
  34. Ostergaard, K., & Sunde, N. A. (2006). Evolution of Parkinson’s disease during 4 years of bilateral deep brain stimulation of the subthalamic nucleus. Movement Disorders, 21, 624–631.PubMedCrossRefGoogle Scholar
  35. Pascual, A., Modolo, J., & Beuter, A. (2006). Is a computational model useful to understand the effect of deep brain stimulation in Parkinson’s disease? Journal of Integrative Neuroscience, 5, 541–559.PubMedCrossRefGoogle Scholar
  36. Perlmutter, J. S., & Mink, J. W. (2006). Deep brain stimulation. Annual Review of Neuroscience, 29, 229–257.PubMedCrossRefGoogle Scholar
  37. Plenz, D., & Kitai, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400, 677–682.PubMedCrossRefGoogle Scholar
  38. Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. Journal of Neuroscience, 20, 8559–8571.PubMedGoogle Scholar
  39. Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem. Neuroscience, 89, 1009–1023.PubMedCrossRefGoogle Scholar
  40. Rizzone, M., Ferrarin, M., Pedotti, A., Bergamasco, B., Bosticco, E., Lanotte, M., et al. (2002). High-frequency electrical stimulation of the subthalamic nucleus in Parkinson’s disease: Kinetic and kinematic gait analysis. Neurological Sciences, 23, S103–S104.PubMedCrossRefGoogle Scholar
  41. Rocchi, L., Chiari, L., Cappello, A., Gross, A., & Horak, F. B. (2004). Comparison between subthalamic nucleus and globus pallidus internus stimulation for postural performance in Parkinson’s disease. Gait & Posture, 19, 172–183.CrossRefGoogle Scholar
  42. Rocchi, L., Chiari, L., & Horak, F. B. (2002). Effects of deep brain stimulation and levodopa on postural sway in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 73, 267–274.PubMedCrossRefGoogle Scholar
  43. Rodriguez-Oroz, M. C., Obeso, J. A., Lang, A. E., Houeto, J. L., Pollak, P., Rehncrona, S., et al. (2005). Bilateral deep brain stimulation in Parkinson’s disease: A multicentre study with 4 years follow-up. Brain, 128, 2240–2249.PubMedCrossRefGoogle Scholar
  44. Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16, 211–235.PubMedCrossRefGoogle Scholar
  45. Stanford, I. M., & Cooper, A. J. (1999). Presynaptic μ and δ opioid receptor modulation of GABAA IPSCs in the rat globus pallidus in vitro. Journal of Neuroscience, 19, 4796–4803.PubMedGoogle Scholar
  46. Stefani, A., Fedele, E., Galati, S., Pepicelli, O., Frasca, S., Pierantozzi, M., et al. (2005). Subthalamic stimulation activates internal pallidus: Evidence from cGMP microdialysis in PD patients. Annals of Neurology, 57, 448–452.PubMedCrossRefGoogle Scholar
  47. Stefani, A., Fedele, E., Galati, S., Raiteri, M., Pepicelli, O., Brusa, L., Pierantozzi, M., Peppe, A., Pisani, A., & Gattoni, G. (2006). Deep brain stimulation in Parkinson’s disease patients: Biochemical evidence. Journal of Neural Transmission. Supplementa, 70, 401–408.CrossRefGoogle Scholar
  48. Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22, 2963–2976.PubMedGoogle Scholar
  49. Vitek, J. L. (2002). Mechanisms of deep brain stimulation: Excitation or inhibition. Movement Disorders, 17, S69–S72.PubMedCrossRefGoogle Scholar
  50. Vitek, J. L., Hashimoto, T., Peoples, J., DeLong, M. R., & Bakay, R. A. E. (2004). Acute stimulation in the external segment of the globus pallidus improves parkinsonian motor signs. Movement Disorders, 19, 907–915.PubMedCrossRefGoogle Scholar
  51. Weaver, F., Follett, K., Hur, K., Ippolito, D., & Stern, M. (2005). Deep brain stimulation in Parkinson disease: A metaanalysis of patient outcomes. Journal of Neurosurgery, 103, 956–967.PubMedCrossRefGoogle Scholar
  52. Yokoyama, T., Sugiyama, K., Nishizawa, S., Yokota, N., Ohta, S., & Uemura, K. (1999). Subthalamic nucleus stimulation for gait disturbance in Parkinson’s disease. Neurosurgery, 45, 41–47.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marco Pirini
    • 1
  • Laura Rocchi
    • 1
  • Mariachiara Sensi
    • 2
  • Lorenzo Chiari
    • 1
    Email author
  1. 1.Biomedical Engineering Unit, Department of Electronics, Computer Science & SystemsUniversità di BolognaBolognaItaly
  2. 2.Department of NeuroscienceS. Anna University Hospital of FerraraFerraraItaly

Personalised recommendations