Skip to main content
Log in

Parametric and non-parametric modeling of short-term synaptic plasticity. Part II: Experimental study

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

This paper presents a synergistic parametric and non-parametric modeling study of short-term plasticity (STP) in the Schaffer collateral to hippocampal CA1 pyramidal neuron (SC) synapse. Parametric models in the form of sets of differential and algebraic equations have been proposed on the basis of the current understanding of biological mechanisms active within the system. Non-parametric Poisson–Volterra models are obtained herein from broadband experimental input–output data. The non-parametric model is shown to provide better prediction of the experimental output than a parametric model with a single set of facilitation/depression (FD) process. The parametric model is then validated in terms of its input–output transformational properties using the non-parametric model since the latter constitutes a canonical and more complete representation of the synaptic nonlinear dynamics. Furthermore, discrepancies between the experimentally-derived non-parametric model and the equivalent non-parametric model of the parametric model suggest the presence of multiple FD processes in the SC synapses. Inclusion of an additional set of FD process in the parametric model makes it replicate better the characteristics of the experimentally-derived non-parametric model. This improved parametric model in turn provides the requisite biological interpretability that the non-parametric model lacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Berger, T. W., Chauvet, G., & Sclabassi, R. J. (1994). A biological based model of functional properties of the hippocampus. Neural Networks, 7, 1031–1064.

    Article  Google Scholar 

  • Berger, T. W., Eriksson, J. L., Ciarolla, D. A., & Sclabassi, R. J. (1988a). Nonlinear systems analysis of the hippocampal perforant path-dentate projection. II. Effects of random impulse train stimulation. Journal of Neurophysiology, 60, 1076–1094.

    PubMed  CAS  Google Scholar 

  • Berger, T. W., Eriksson, J. L., Ciarolla, D. A., & Sclabassi, R. J. (1988b). Nonlinear systems analysis of the hippocampal perforant path-dentate projection. III. Comparison of random train and paired impulse stimulation. Journal of Neurophysiology, 60, 1095–1109.

    PubMed  CAS  Google Scholar 

  • Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Oxford University Press.

    Google Scholar 

  • Clements, J. D., Lester, R. A., Tong, G., Jahr, C. E., & Westbrook, G. L. (1992). The time course of glutamate in the synaptic cleft. Science, 258, 1498–1501.

    Article  PubMed  CAS  Google Scholar 

  • Creager, R., Dunwiddie, T., & Lynch, G. (1980). Paired-pulse and frequency facilitation in the CA1 region of the in vitro rat hippocampus. Journal of Physiology, 299, 409–424.

    PubMed  CAS  Google Scholar 

  • Dittman, J. S., Kreitzer, A. C., & Regehr, W. G. (2000). Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. Journal of Neuroscience, 20, 1374–1385.

    PubMed  CAS  Google Scholar 

  • Dobrunz, L. E., Huang, E. P., & Stevens, C. F. (1997). Very short-term plasticity in hippocampal synapses. Proceedings of the National Academy of Sciences of the United States of America, 94, 14843–14847.

    Article  PubMed  CAS  Google Scholar 

  • Dobrunz, L. E., & Stevens, C. F. (1997). Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron, 18, 995–1008.

    Article  PubMed  CAS  Google Scholar 

  • Eccles, J. C., Katz, B., & Kuffler, S. W. (1941). Nature of the endplate potential in curarized muscle. Journal of Neurophysiology, 4, 362–387.

    Google Scholar 

  • Fuhrmann, G., Cowan, A., Segev, I., Tsodyks, M., & Stricker, C. (2004). Multiple mechanisms govern the dynamics of depression at neocortical synapses of young rats. Journal of Physiology, 557, 415–438.

    Article  PubMed  CAS  Google Scholar 

  • Gage, P. W., & Murphy, E. C. (1981). Facilitation of acetylcholine secretion at a mouse neuromuscular junction. Brain Research, 204, 327–337.

    Article  PubMed  CAS  Google Scholar 

  • Gover, T. D., Jiang, X. Y., & Abrams, T. W. (2002). Persistent, exocytosis-independent silencing of release sites underlies homosynaptic depression at sensory synapses in Aplysia. Journal of Neuroscience, 22, 1942–1955.

    PubMed  CAS  Google Scholar 

  • Hanse, E., & Gustafsson, B. (2001a). Factors explaining heterogeneity in short-term synaptic dynamics of hippocampal glutamatergic synapses in the neonatal rat. Journal of Physiology, 537, 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Hanse, E., & Gustafsson, B. (2001b). Vesicle release probability and pre-primed pool at glutamatergic synapses in area CA1 of the rat neonatal hippocampus. Journal of Physiology, 531, 481–493.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, K., & Kano, M. (1998). Presynaptic origin of paired-pulse depression at climbing fibre-Purkinje cell synapses in the rat cerebellum. Journal of Physiology, 506, 391–405.

    Article  PubMed  CAS  Google Scholar 

  • Hjelmstad, G. O., Nicoll, R. A., & Malenka, R. C. (1997). Synaptic refractory period provides a measure of probability of release in the hippocampus. Neuron, 19, 1309–1318.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, S. F., Augustine, G. J., & Jackson, M. B. (1996). Adaptation of Ca(2+)-triggered exocytosis in presynaptic terminals. Neuron, 17, 501–512.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M. V., & Westbrook, G. L. (1996). The impact of receptor desensitization on fast synaptic transmission. Trends in Neurosciences, 19, 96–101.

    Article  PubMed  CAS  Google Scholar 

  • Kirischuk, S., Clements, J. D., & Grantyn, R. (2002). Presynaptic and postsynaptic mechanisms underlie paired pulse depression at single GABAergic boutons in rat collicular cultures. Journal of Physiology, 543, 99–116.

    Article  PubMed  CAS  Google Scholar 

  • Kraushaar, U., & Jonas, P. (2000). Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. Journal of Neuroscience, 20, 5594–5607.

    PubMed  CAS  Google Scholar 

  • Krausz, H. I., & Friesen, W. O. (1977). The analysis of nonlinear synaptic transmission. Journal of General Physiology, 70, 243–265.

    Article  PubMed  CAS  Google Scholar 

  • Marmarelis, V. Z. (1993). Identification of nonlinear biological systems using Laguerre expansions of kernels. Annals of Biomedical Engineering, 21, 573–589.

    Article  PubMed  CAS  Google Scholar 

  • Marmarelis, V. Z. (2004). Nonlinear dynamic modeling of physiological systems. Hoboken: Wiley.

    Google Scholar 

  • Marmarelis, V. Z., & Berger, T. W. (2005). General methodology for nonlinear modeling of neural systems with Poisson point-process inputs. Mathematical Biosciences, 196, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Marmarelis, V. Z., & Marmarelis, P. Z. (1978). Analysis of physiological systems: the white-noise approach. New York: Plenum.

    Google Scholar 

  • Mody, I., Lambert, J. D., & Heinemann, U. (1987). Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. Journal of Neurophysiology, 57, 869–888.

    PubMed  CAS  Google Scholar 

  • Pedroarena, C. M., & Schwarz, C. (2003). Efficacy and short-term plasticity at GABAergic synapses between Purkinje and cerebellar nuclei neurons. Journal of Neurophysiology, 89, 704–715.

    Article  PubMed  CAS  Google Scholar 

  • Rahamimoff, R. (1968). A dual effect of calcium ions on neuromuscular facilitation. Journal of Physiology, 195, 471–480.

    PubMed  CAS  Google Scholar 

  • Sclabassi, R. J., Eriksson, J. L., Port, R. L., Robinson, G. B., & Berger, T. W. (1988). Nonlinear systems analysis of the hippocampal perforant path-dentate projection. I. Theoretical and interpretational considerations. Journal of Neurophysiology, 60, 1066–1076.

    PubMed  CAS  Google Scholar 

  • Silver, R. A., Momiyama, A., & Cull-Candy, S. G. (1998). Locus of frequency-dependent depression identified with multiple-probability fluctuation analysis at rat climbing fibre-Purkinje cell synapses. Journal of Physiology, 510, 881–902.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, C. F., & Wang, Y. (1995). Facilitation and depression at single central synapses. Neuron, 14, 795–802.

    Article  PubMed  CAS  Google Scholar 

  • Trussell, L. O., & Fischbach, G. D. (1989). Glutamate receptor desensitization and its role in synaptic transmission. Neuron, 3, 209–218.

    Article  PubMed  CAS  Google Scholar 

  • Wadiche, J. I., & Jahr, C. E. (2001). Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron, 32, 301–313.

    Article  PubMed  CAS  Google Scholar 

  • Waldeck, R. F., Pereda, A., & Faber, D. S. (2000). Properties and plasticity of paired-pulse depression at a central synapse. Journal of Neuroscience, 20, 5312–5320.

    PubMed  CAS  Google Scholar 

  • Yamada, K. A., & Tang, C. M. (1993). Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents. Journal of Neuroscience, 13, 3904–3915.

    PubMed  CAS  Google Scholar 

  • Zengel, J. E., & Magleby, K. L. (1982). Augmentation and facilitation of transmitter release. A quantitative description at the frog neuromuscular junction. Journal of General Physiology, 80, 583–611.

    Article  PubMed  CAS  Google Scholar 

  • Zengel, J. E., Magleby, K. L., Horn, J. P., McAfee, D. A., & Yarowsky, P. J. (1980). Facilitation, augmentation, and potentiation of synaptic transmission at the superior cervical ganglion of the rabbit. Journal of General Physiology, 76, 213–231.

    Article  PubMed  CAS  Google Scholar 

  • Zucker, R. S., & Regehr, W. G. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64, 355–405.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the NSF ERC (BMES), DARPA (HAND), ONR, NSF (BITS), and NIH/NIBIB (BMSR). We thank the two anonymous reviewers for their insightful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Song.

Additional information

Action Editor: David Golomb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, D., Wang, Z., Marmarelis, V.Z. et al. Parametric and non-parametric modeling of short-term synaptic plasticity. Part II: Experimental study. J Comput Neurosci 26, 21–37 (2009). https://doi.org/10.1007/s10827-008-0098-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0098-2

Keywords

Navigation