Journal of Computational Neuroscience

, Volume 26, Issue 1, pp 55–73 | Cite as

Multisensory integration in the superior colliculus: a neural network model

  • Mauro UrsinoEmail author
  • Cristiano Cuppini
  • Elisa Magosso
  • Andrea Serino
  • Giuseppe di Pellegrino


Neurons in the superior colliculus (SC) are known to integrate stimuli of different modalities (e.g., visual and auditory) following specific properties. In this work, we present a mathematical model of the integrative response of SC neurons, in order to suggest a possible physiological mechanism underlying multisensory integration in SC. The model includes three distinct neural areas: two unimodal areas (auditory and visual) are devoted to a topological representation of external stimuli, and communicate via synaptic connections with a third downstream area (in the SC) responsible for multisensory integration. The present simulations show that the model, with a single set of parameters, can mimic various responses to different combinations of external stimuli including the inverse effectiveness, both in terms of multisensory enhancement and contrast, the existence of within- and cross-modality suppression between spatially disparate stimuli, a reduction of network settling time in response to cross-modal stimuli compared with individual stimuli. The model suggests that non-linearities in neural responses and synaptic (excitatory and inhibitory) connections can explain several aspects of multisensory integration.


Mathematical model Multisensory enhancement Cross-modal inhibition 


  1. Amlot, R., Walken, R., Driver, J., & Spence, C. (2003). Multimodal visual–somatosensory integration in saccade generation. Neuropsychology, 41, 1–15.CrossRefGoogle Scholar
  2. Anastasio, T. J., & Patton, P. E. (2003). A two-stage unsupervised learning algorithm reproduces multisensory enhancement in a neural network model of the corticotectal system. Journal of Neuroscience, 23, 6713–6727.PubMedGoogle Scholar
  3. Anastasio, T. J., Patton, P. E., & Belkacem-Boussaid, K. (2000). Using Bayes rule to model multisensory enhancement in the superior colliculus. Neural Computation, 12, 1165–1187.PubMedCrossRefGoogle Scholar
  4. Bell, A. H., Corneil, B. D., Meredith, M. A., & Munoz, D. P. (2001). The influence of stimulus properties on multisensory processing in the awake primate superior colliculus. Canadian Journal of Experimental Psychology, 55, 123–132.PubMedGoogle Scholar
  5. Ben-Yishai, R., Bar, O., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 92, 3844–3848.PubMedCrossRefGoogle Scholar
  6. Bermant, R. I., & Welch, R. B. (1976). Effect of degree of separation of visual–auditory stimulus and eye position upon spatial interaction of vision and audition. Perceptual and Motor Skills, 43, 487–493.Google Scholar
  7. Edwards, S. B., Ginsburgh, C. L., Henkel, C. K., & Stein, B. E. (1979). Sources of subcortical projections to the superior colliculus in the Cat. Journal of Comparative Neurology, 184, 309–330.PubMedCrossRefGoogle Scholar
  8. Frassinetti, F., Bolognini, N., & Ladavas, E. (2002). Enhancement of visual perception by crossmodal visuo-auditory interaction. Experimental Brain Research, 147, 332–343.CrossRefGoogle Scholar
  9. Frens, M. A., & Van Opstal, A. J. (1998). Visual-auditory interactions modulate saccade-related activity in monkey superior colliculus. Brain Research Bulletin, 46, 211–224.PubMedCrossRefGoogle Scholar
  10. Frens, M. A., Van Opstal, A. J., & Van der Willigen, R. F. (1995). Spatial and temporal factors determine auditory–visual interactions in human saccadic eye movements. Perception & Psychophysics, 57, 802–816.Google Scholar
  11. Huerta, M. F., & Harting, J. K. (1984). The mammalian superior colliculus: studies of its morphology and connections. In H. Vanegas (Ed.), Comparative neurology of the optic tectum (pp. 687–773). New York: Plenum.Google Scholar
  12. Hughes, H. C., Reuter-Lorenz, P. A., Nozawa, G., & Fendrich, R. (1994). Visual–auditory interactions in sensorimotor processing: saccades versus manual responses. Journal of Experimental Psychology. Human Perception and Performance, 20, 131–153.PubMedCrossRefGoogle Scholar
  13. Jiang, W., Jiang, H., & Stein, B. E. (2002). Two corticotectal areas facilitate multisensory orientation behavior. Journal of Cognitive Neuroscience, 14, 1240–1255.PubMedCrossRefGoogle Scholar
  14. Jiang, W., & Stein, B. E. (2003). Cortex controls multisensory depression in superior colliculus. Journal of Neurophysiology, 90, 2123–2135.PubMedCrossRefGoogle Scholar
  15. Jiang, W., Wallace, M. T., Jiang, H., Vaughan, J. W., & Stein, B. E. (2001). Two cortical areas mediate multisensory integration in superior colliculus neurons. Journal of Neurophysiology, 85, 506–522.PubMedGoogle Scholar
  16. Kadunce, D. C., Vaughan, J. W., Wallace, M. T., Benedek, G., & Stein, B. E. (1997). Mechanisms of within- and cross-modality suppression in the superior colliculus. Journal of Neurophysiology, 78, 2834–2847.PubMedGoogle Scholar
  17. Kadunce, D. C., Vaughan, J. W., Wallace, M. T., & Stein, B. E. (2001). The influence of visual and auditory receptive field organization on multisensory integration in the superior colliculus. Experimental Brain Research, 139, 303–310.CrossRefGoogle Scholar
  18. King, A. J., & Palmer, A. R. (1985). Integration of visual and auditory information in bimodal neurons in the Guinea pig superior colliculus. Experimental Brain Research, 60, 492–500.CrossRefGoogle Scholar
  19. Meredith, M. A., & Stein, B. E. (1986a). Spatial factors determine the activity of multisensory neurons in cat superior colliculus. Brain Research, 365, 350–354.PubMedCrossRefGoogle Scholar
  20. Meredith, M. A., & Stein, B. E. (1986b). Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of Neurophysiology, 56, 640–662.PubMedGoogle Scholar
  21. Meredith, M. A., & Stein, B. E. (1996). Spatial determinants of multisensory integration in cat superior colliculus neurons. Journal of Neurophysiology, 75, 1843–1857.PubMedGoogle Scholar
  22. Mize, R. R., Withworth, H., Nunes-Cardozo, B., & van der Want, J. (1994). Ultrastructural organization of GABA in the rabbit superior colliculus revealed by quantitative postembedding immunocytochemistry. Journal of Comparative Neurology, 341, 273–287.PubMedCrossRefGoogle Scholar
  23. Patton, P. E., & Anastasio, T. J. (2003). Modelling cross-modal enhancement and modality-specific suppression in multisensory neurons. Neural Computation, 15, 783–810.PubMedCrossRefGoogle Scholar
  24. Patton, P. E., Belkacem-Boussaid, K., & Anastasio, T. J. (2002). Multimodality in the superior colliculus: an information theoretic analysis. Brain Research, Cognitive Brain Research, 14, 10–19.CrossRefGoogle Scholar
  25. Peck, C. K. (1996). Visual–auditory integration in cat superior colliculus: Implications for neuronal control of the orienting response. Progress in Brain Research, 112, 167–177.PubMedCrossRefGoogle Scholar
  26. Perrault Jr., T. J., Vaughan, J. W., Stein, B. E., & Wallace, M. T. (2003). Neuron-specific response characteristics predict the magnitude of multisensory integration. Journal of Neurophysiology, 90, 4022–4026.PubMedCrossRefGoogle Scholar
  27. Perrault Jr., T. J., Vaughan, J. W., Stein, B. E., & Wallace, M. T. (2005). Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli. Journal of Neurophysiology, 93, 2575–2586.PubMedCrossRefGoogle Scholar
  28. Perrott, D. R., Saberi, K., Brown, K., & Strybel, T. Z. (1990). Auditory psychomotor coordination and visual search performance. Perception & Psychophysics, 48, 214–226.Google Scholar
  29. Populin, L. C. (2005). Anesthetics change the excitation/inhibition balance that governs sensory processing in the cat superior colliculus. Journal of Neuroscience, 25, 5903–5914.PubMedCrossRefGoogle Scholar
  30. Populin, L. C., & Yin, T. C. T. (2002). Bimodal interactions in the superior colliculus of the behaving cat. Journal of Neuroscience, 22, 2826–2834.PubMedGoogle Scholar
  31. Schroger, E., & Widmann, A. (1998). Speeded responses to audiovisual signal changes result from bimodal integration. Psychophysiology, 35, 755–759.PubMedCrossRefGoogle Scholar
  32. Sparks, D. L. (1986). Translation of sensory signals into commands for control of saccadic eye movements: Role of primate superior colliculus. Physiological Reviews, 66, 118–171.PubMedGoogle Scholar
  33. Stanford, T. R., Quessy, S., & Stein, B. E. (2005). Evaluating the operations underlying multisensory integration in the cat superior colliculus. Journal of Neuroscience, 25, 6499–6508.PubMedCrossRefGoogle Scholar
  34. Stein, B. E. (1998). Neural mechanisms for synthesizing sensory information and producing adaptive behaviors. Experimental Brain Research, 123, 124–135.CrossRefGoogle Scholar
  35. Stein, B. E., Huneycutt, W. S., & Meredith, M. A. (1988). Neurons and behavior: The same rules of multisensory integration apply. Brain Research, 448, 355–358.PubMedCrossRefGoogle Scholar
  36. Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge, MA: MIT.Google Scholar
  37. Stein, B. E., Meredith, M. A., Huneycutt, W. S., & McDade, L. (1989). Behavioral indices of multisensory integration: Orientation to visual cues is affected by auditory stimuli. Journal of Cognitive Neuroscience, 1, 12–24.CrossRefGoogle Scholar
  38. Treves, A. (1993). Mean-field analysis of neuronal spike dynamics. Network, 4, 259–284.CrossRefGoogle Scholar
  39. Wallace, M. T., Meredith, M. A., & Stein, B. E. (1993). Converging influences from visual, auditory, and somatosensory cortices onto output neurons of the superior colliculus. Journal of Neurophysiology, 69, 1797–1809.PubMedGoogle Scholar
  40. Wallace, M. T., Meredith, M. A., & Stein, B. E. (1998). Multisensory integration in the superior colliculus of the alert cat. Journal of Neurophysiology, 80, 1006–1010.PubMedGoogle Scholar
  41. Wallace, M. T., Wilkinson, L. K., & Stein, B. E. (1996). Representation and integration of multiple sensory inputs in primate superior colliculus. Journal of Neurophysiology, 96, 1246–1266.Google Scholar
  42. Welch, R. B., & Warren, D. H. (1986). Intersensory interaction. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human performance (pp. 1–36). New York: Wiley.Google Scholar
  43. Wilkinson, L. K., Meredith, M. A., & Stein, B. E. (1996). The role of anterior ectosylvian cortex in cross-modality orientation and approach behavior. Experimental Brain Research, 112, 1–10.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mauro Ursino
    • 1
    Email author
  • Cristiano Cuppini
    • 1
  • Elisa Magosso
    • 1
  • Andrea Serino
    • 2
  • Giuseppe di Pellegrino
    • 2
  1. 1.Department of Electronics, Computer Science and SystemsUniversity of BolognaBolognaItaly
  2. 2.Department of PsychologyUniversity of BolognaBolognaItaly

Personalised recommendations