Motor pattern selection by combinatorial code of interneuronal pathways

  • Wolfgang SteinEmail author
  • Oliver Straub
  • Jessica Ausborn
  • Wolfgang Mader
  • Harald Wolf


We use a modeling approach to examine ideas derived from physiological network analyses, pertaining to the switch of a motor control network between two opposite control modes. We studied the femur–tibia joint control system of the insect leg, and its switch between resistance reflex in posture control and “active reaction” in walking, both elicited by the same sensory input. The femur–tibia network was modeled by fitting the responses of model neurons to those obtained in animals. The strengths of 16 interneuronal pathways that integrate sensory input were then assigned three different values and varied independently, generating a database of more than 43 million network variants. We demonstrate that the same neural network can produce the two different behaviors, depending on the combinatorial code of interneuronal pathways. That is, a switch between behaviors, such as standing to walking, can be brought about by altering the strengths of selected sensory integration pathways.


Physiological simulations Exhaustive search Posture control Stick insect Combinatorial code Movement control Neuronal network Sensory feedback 



We thank Dr. Arne Sauer for his help with the project. The Communication and Information Center of Ulm University, and namely Peter Schulthess, permitted use of their computer facilities as an essential prerequisite for our exhaustive search strategy. Jessica Ausborn was supported by a scholarship of the Studienstiftung des Deutschen Volkes during this study.

Supplementary material

10827_2008_93_MOESM1_ESM.pdf (190 kb)
Supplementary material 1 Supplementary material regarding Fig. 7 (PDF 195 kb)
10827_2008_93_MOESM2_ESM.pdf (215 kb)
Supplementary material 2 Supplementary material regarding Fig. 14 (PDF 219 kb)


  1. Akay, T. (2002). The role of sensory signals for interjoint coordination in stick insect legs (Carausius morosus and Cuniculina impigra). (Thesis) Mathematisch-Naturwissenschaftliche Fakultaet, Ph.D. thesis, University of Cologne.Google Scholar
  2. Ausborn, J., Stein, W., & Wolf, H. (2007). Frequency control of motor patterning by negative sensory feedback. Journal of Neuroscience, 27, 9319–9328.PubMedCrossRefGoogle Scholar
  3. Bässler, U. (1983). Neural basis of elementary behavior in stick insects. Berlin: Springer.Google Scholar
  4. Bässler, U. (1988). Functional principles of pattern generation for walking movements of stick insect forelegs: The role of the femoral chordotonal organ afferences. Journal of Experimental Biology, 136, 125–147.Google Scholar
  5. Bässler, U. (1993). The femur–tibia control system of stick insects—A model system for the study of the neural basis of joint control. Brain Research Brain Research Reviews, 18, 207–226.PubMedCrossRefGoogle Scholar
  6. Bässler, U., & Büschges, A. (1990). Interneurones participating in the “active reaction” in stick insects. Biological Cybernetics, 62, 529–538.CrossRefGoogle Scholar
  7. Bässler, U., & Büschges, A. (1998). Pattern generation for stick insect walking movements—Multisensory control of a locomotor program. Brain Research Reviews, 27, 65–88.PubMedCrossRefGoogle Scholar
  8. Bässler, U., Wolf, H., & Stein, W. (2007). Functional recovery following manipulation of muscles and sense organs in the stick insect leg. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 193, 1151–1168.PubMedCrossRefGoogle Scholar
  9. Baumgardt, M., Miguel-Aliaga, I., Karlsson, D., Ekman, H., & Thor, S. (2007). Specification of neuronal identities by feedforward combinatorial coding. PLoS Biology, 5, e37.PubMedCrossRefGoogle Scholar
  10. Beaujean, D., Rosenbaum, C., Muller, H. W., Willemsen, J. J., Lenders, J., & Bornstein, S. R. (2003). Combinatorial code of growth factors and neuropeptides define neuroendocrine differentiation in PC12 cells. Experimental Neurology, 184, 348–358.PubMedCrossRefGoogle Scholar
  11. Bergdoll, S., & Koch, U. T. (1995). BIOSIM—A biological neural network simulator for research and teaching, featuring interactive graphical user interface and learning capabilities. Neurocomputing, 8, 93–112.CrossRefGoogle Scholar
  12. Büschges, A. (1989). Processing of sensory input from the femoral chordotonal organ by spiking interneurones of stick insects. Journal of Experimental Biology, 144, 81–111.Google Scholar
  13. Büschges, A. (1990). Nonspiking pathways in a joint-control loop of the stick insect. Journal of Experimental Biology, 151, 133–160.Google Scholar
  14. Büschges, A. (1994). The physiology of sensory cells in the ventral scoloparium of the stick insect femoral chordotonal organ. Journal of Experimental Biology, 189, 285–292.PubMedGoogle Scholar
  15. Büschges, A., Ludwar, B. C., Bucher, D., Schmidt, J., & DiCaprio, R. A. (2004). Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system. European Journal of Neuroscience, 19, 1856–1862.PubMedCrossRefGoogle Scholar
  16. Büschges, A., & Wolf, H. (1995). Nonspiking local interneurons in insect leg motor control I. Common layout and species-specific response properties of femur–tibia joint control pathways in stick insect and locust. Journal of Neurophysiology, 73, 1843–1860.PubMedGoogle Scholar
  17. Cruse, H. (1990). What mechanisms coordinate leg movement in walking arthropods. Trends in Neurosciences, 13, 15–21.PubMedCrossRefGoogle Scholar
  18. Driesang, R. B., & Büschges, A. (1996). Physiological changes in central neuronal pathways contributing to the generation of a reflex reversal. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 179, 45–57.Google Scholar
  19. Ekeberg, Ö., Wallén, P., Lansner, A., Travén, H., Brodin, L., & Grillner, S. (1991). A computer based model for realistic simulations of neural networks. Biological Cybernetics, 65, 81–90.PubMedCrossRefGoogle Scholar
  20. Esch, T., & Kristan, W. B., Jr. (2002). Decision-making in the leech nervous system. Integrative and Comparative Biology, 42, 716.CrossRefGoogle Scholar
  21. Grillner, S., Georgopoulos, A. P., & Jordan, L. M. (1997). Selection and initiation of motor behavior. In P. S. G. Stein, S. Grillner, A. I. Selverstone, & D. G. Stuart (Eds.), Neurons, networks and motor behavior (pp. 3–20). Cambridge: MIT.Google Scholar
  22. Hattox, A., Li, Y., & Keller, A. (2003). Serotonin regulates rhythmic whisking. Neuron, 39, 343–352.PubMedCrossRefGoogle Scholar
  23. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.PubMedGoogle Scholar
  24. Hofmann, T., Koch, U. T., & Bässler, U. (1985). Physiology of the femoral chordotonal organ in the stick insect, Cuniculina impigra. Journal of Experimental Biology, 114, 207–223.Google Scholar
  25. Hounsgaard, J., & Kiehn, O. (1989). Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential. Journal of Physiology, 414, 265–282.PubMedGoogle Scholar
  26. Jacobs, G. A., & Theunissen, F. E. (1996). Functional organization of a neural map in the cricket cercal sensory system. Journal of Neuroscience, 16, 769–784.PubMedGoogle Scholar
  27. Kiani, R., Esteky, H., Mirpour, K., & Tanaka, K. (2007). Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. Journal of Neurophysiology, 97, 4296.PubMedCrossRefGoogle Scholar
  28. Koh, H. Y., & Weiss, K. R. (2007). Activity-dependent peptidergic modulation of the plateau-generating neuron B64 in the feeding network of Aplysia. Journal of Neurophysiology, 97, 1862–1867.PubMedCrossRefGoogle Scholar
  29. Kristan, W. B., Jr., & Shaw, B. K. (1997). Population coding and behavioral choice. Current Opinion in Neurobiology, 7, 826–831.PubMedCrossRefGoogle Scholar
  30. Lieske, S. P., Thoby-Brisson, M., Telgkamp, P., & Ramirez, J. M. (2000). Reconfiguration of the neural network controlling multiple breathing patterns: Eupnea, sighs and gasps. Nature Neuroscience, 3, 600–607.PubMedCrossRefGoogle Scholar
  31. Malnic, B., Hirono, J., Sato, T., & Buck, L. B. (1999). Combinatorial receptor codes for odors. Cell, 96, 713–723.PubMedCrossRefGoogle Scholar
  32. Marder, E. (2000). Motor pattern generation. Current Opinion in Neurobiology, 10, 691–698.PubMedCrossRefGoogle Scholar
  33. Marder, E., & Bucher, D. (2007). Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annual Review of Physiology, 69, 291–316.PubMedCrossRefGoogle Scholar
  34. Marder, E., & Calabrese, R. L. (1996). Principles of rhythmic motor pattern generation. Physiology Review, 76, 687–717.Google Scholar
  35. McLean, D. L., & Sillar, K. T. (2004). Metamodulation of a spinal locomotor network by nitric oxide. Journal of Neuroscience, 24, 9561–9571.PubMedCrossRefGoogle Scholar
  36. Nusbaum, M. P., & Beenhakker, M. P. (2002). A small-systems approach to motor pattern generation. Nature, 417, 343–350.PubMedCrossRefGoogle Scholar
  37. Pearson, K. G. (2004). Generating the walking gait: Role of sensory feedback. Progress in Brain Research, 143, 123–129.PubMedCrossRefGoogle Scholar
  38. Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7, 1345–1352.PubMedCrossRefGoogle Scholar
  39. Sauer, A. E., Büschges, A., & Stein, W. (1997). Role of presynaptic inputs to proprioceptive afferents in tuning sensorimotor pathways of an insect joint control network. Journal of Neurobiology, 32, 359–376.PubMedCrossRefGoogle Scholar
  40. Sauer, A. E., Driesang, R. B., Büschges, A., & Bässler, U. (1995). Information processing in the femur–tibia control loop of stick insects. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 177, 145–158.Google Scholar
  41. Sauer, A. E., Driesang, R. B., Büschges, A., Bässler, U., & Borst, A. (1996). Distributed processing on the basis of parallel and antagonistic pathways simulation of the femur–tibia control system in the stick insect. Journal of Computational Neuroscience, 3, 179–198.PubMedCrossRefGoogle Scholar
  42. Simmers, J., & Moulins, M. (1988). Nonlinear interneuronal properties underlie integrative flexibility in a lobster disynaptic sensorimotor pathway. Journal of Neurophysiology, 59, 757–777.PubMedGoogle Scholar
  43. Smith, D. V., & St. John, S. J. (1999). Neural coding of gustatory information. Current Opinion in Neurobiology, 9, 427–435.PubMedCrossRefGoogle Scholar
  44. Sparks, D. L., Kristan, W. B., & Shaw, B. K. (1997). The role of population coding in the control of movement. In P. S. G. Stein, S. Grillner, A. I. Selverston, & D. G. Stuart (Eds.), Neurons, networks and motor behavior (pp. 21–32). Cambridge: MIT.Google Scholar
  45. Stein, W., & Ausborn, J. (2004). Analog modulation of digital computation in nerve cells: Simulating the stomatogastric nervous system of the crab. In C. Bobeanu (Ed.), Modelling and simulation ‘2004 (pp. 148–152). Ghent (Belgium): Eurosis-ETI.Google Scholar
  46. Stein, W., Büschges, A., & Bässler, U. (2006). Intersegmental transfer of sensory signals in the stick insect leg muscle control system. Journal of Neurobiology, 66, 1253–1269.PubMedCrossRefGoogle Scholar
  47. Stein, W., & Sauer, A. E. (1998). Modulation of sensorimotor pathways associated with gain changes in a posture-control network of an insect. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 183, 489–501.CrossRefGoogle Scholar
  48. Straub, O., Mader, W., Ausborn, J., & Stein, W. (2004). Motor output variability in a joint control system—A simulation study. In C. Bobeanu (Ed.), Modelling and simulation ‘2004 (pp. 135–139). Ghent (Belgium): Eurosis-ETI.Google Scholar
  49. Tryba, A. K., Pena, F., & Ramirez, J. M. (2006). Gasping activity in vitro: A rhythm dependent on 5-HT2A receptors. Journal of Neuroscience, 26, 2623–2634.PubMedCrossRefGoogle Scholar
  50. Weiland, G., & Koch, U. T. (1987). Sensory feedback during active movements of stick insects. Journal of Experimental Biology, 133, 137–156.Google Scholar
  51. Wolf, H., Bässler, U., Spieß, R., & Kittmann, R. (2001). The femur–tibia control system in a proscopiid (Caelifera, Orthoptera): A test for assumptions on the functional basis and evolution of twig mimesis in stick insects. Journal of Experimental Biology, 204, 3815–3828.PubMedGoogle Scholar
  52. Wolf, H., & Burrows, M. (1995). Proprioceptive sensory neurons of a locust leg receive rhythmic presynpatic inhibition during walking. Journal of Neuroscience, 15, 5623–5636.PubMedGoogle Scholar
  53. Woolley, S. M. N., Gill, P. R., & Theunissen, F. E. (2006). Stimulus-dependent auditory tuning results in synchronous population coding of vocalizations in the songbird midbrain. Journal of Neuroscience, 26, 2499–2512.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Wolfgang Stein
    • 1
    Email author
  • Oliver Straub
    • 1
  • Jessica Ausborn
    • 1
  • Wolfgang Mader
    • 1
  • Harald Wolf
    • 1
  1. 1.Institute of NeurobiologyUlm UniversityUlmGermany

Personalised recommendations