Journal of Computational Neuroscience

, Volume 25, Issue 3, pp 520–542 | Cite as

Simulation system of spinal cord motor nuclei and associated nerves and muscles, in a Web-based architecture

  • Rogerio R. L. CisiEmail author
  • André F. KohnEmail author


A Web-based simulation system of the spinal cord circuitry responsible for muscle control is described. The simulator employs two-compartment motoneuron models for S, FR and FF types, with synaptic inputs acting through conductance variations. Four motoneuron pools with their associated interneurons are represented in the simulator, with the possibility of inclusion of more than 2,000 neurons and 2,000,000 synapses. Each motoneuron action potential is followed, after a conduction delay, by a motor unit potential and a motor unit twitch. The sums of all motor unit potentials and twitches result in the electromyogram (EMG), and the muscle force, respectively. Inputs to the motoneuron pool come from populations of interneurons (Ia reciprocal inhibitory interneurons, Ib interneurons, and Renshaw cells) and from stochastic point processes associated with descending tracts. To simulate human electrophysiological experiments, the simulator incorporates external nerve stimulation with orthodromic and antidromic propagation. This provides the mechanisms for reflex generation and activation of spinal neuronal circuits that modulate the activity of another motoneuron pool (e.g., by reciprocal inhibition). The generation of the H-reflex by the Ia-motoneuron pool system and its modulation by spinal cord interneurons is included in the simulation system. Studies with the simulator may include the statistics of individual motoneuron or interneuron spike trains or the collective effect of a motor nucleus on the dynamics of muscle force control. Properties associated with motor-unit recruitment, motor-unit synchronization, recurrent inhibition and reciprocal inhibition may be investigated.


Motoneuron Interneuron Renshaw cell Neuronal network Motoneuron pool Muscle Force EMG H-reflex Modeling Simulator 



This work was supported by grants from Fapesp and CNPq (Brazil) to A.F. Kohn. R.R.L. Cisi was a recipient of a fellowship from Fapesp.


  1. Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic depression and cortical gain control. Science, 275, 220–224.PubMedGoogle Scholar
  2. Andreassen, S., & Arendt-Nielsen, L. (1987). Muscle fibre conduction velocity in motor units of the human anterior tibial muscle: a new size principle parameter. Journal of Physiology, 391, 561–571.PubMedGoogle Scholar
  3. Andreassen, S., & Rosenfalck, A. (1980). Regulation of the firing pattern of single motor units. Journal of Neurology Neurosurgery and Psychiatry, 43, 897–906.Google Scholar
  4. Ariano, M. A., Armstrong, R. B., & Edgerton, V. R. (1973). Hindlimb muscle fiber populations of 5 mammals. Journal of Histochemistry & Cytochemistry, 21, 51–55.Google Scholar
  5. Awiszus, F., & Feistner, H. (1993). The Relationship between estimates of Ia-Epsp amplitude and conduction-velocity in human soleus motoneurons. Experimental Brain Research, 95, 365–370.Google Scholar
  6. Banks, R. W. (2006). An allometric analysis of the number of muscle spindles in mammalian skeletal muscles. Journal of Anatomy, 208, 753–768.PubMedGoogle Scholar
  7. Barret, J. N., & Crill, W. E. (1974). Specific membrane properties of cat motoneurons. Journal of Physiology, 239, 301–324.Google Scholar
  8. Bashor, D. P. (1998). A large-scale model of some spinal reflex circuits. Biological Cybernetics, 78, 147–157.PubMedGoogle Scholar
  9. Binder, M. D., Heckman, C. J., & Powers, R. K. (1996). The physiological control of motoneuron activity. Handbook of physiology. Section 12: Exercise: Regulation and integration of multiple systems pp. 3–53. New York: Oxford University Press.Google Scholar
  10. Booth, V., & Rinzel, J. (1995). A minimal, compartmental model for a dendritic origin of bistability of motoneuron firing patterns. Journal of Computational Neuroscience, 2, 299–312.PubMedGoogle Scholar
  11. Bower, J. M., Beeman, D., & Hucka, M. (2003). The GENESIS simulation system. The handbook of brain theory and neural networks pp. 475–478. Cambridge, MA: MIT Press.Google Scholar
  12. Buchthal, F., & Schmalbruch, H. (1980). Motor unit of mammalian muscle. Physiological Reviews, 60, 90–142.PubMedGoogle Scholar
  13. Bui, T. V., Cushing, S., Dewey, D., Fyffe, R. E., & Rose, P. K. (2003). Comparison of the morphological and electrotonic properties of Renshaw cells, Ia inhibitory interneurons, and motoneurons in the cat. Journal of Neurophysiology, 90, 2900–2918.PubMedGoogle Scholar
  14. Bui, T. V., Ter-Mikaelian, M., Bedrossian, D., & Rose, P. K. (2006). Computational estimation of the distribution of L-type Ca(2+) channels in motoneurons based on variable threshold of activation of persistent inward currents. Journal of Neurophysiology, 95, 225–241.PubMedGoogle Scholar
  15. Burke, R. E. (1981). Motor unit: anatomy, physiology and functional organization. In V. B. Brooks (Ed), Handbook of physiology, The Nervous System. Section II Part I. Bethesda: Am Physiol Soc.Google Scholar
  16. Burke, R. E. (2004). Spinal cord: ventral horn. In G. M. Shepherd (Ed.) The synaptic organization of the brain. New York: Oxford University Press.Google Scholar
  17. Burke, R. E., Levine, D. N., Tsairis, P., & Zajac, F. E. (1973). Physiological types and histochemical profiles in motor units of cat gastrocnemius. Journal of Physiology, 234, 723–748.PubMedGoogle Scholar
  18. Burke, R. E., Rudomin, P., & Zajac, F. E. (1970). Catch property in single mammalian motor units. Science, 168, 122–124.PubMedGoogle Scholar
  19. Burke, R. E., Strick, P. L., Kanda, K., Kim, C. C., & Walmsley, B. (1977). Anatomy of medial gastrocnemius and soleus motor nuclei in cat spinal cord. Journal of Neurophysiology, 40, 667–680.PubMedGoogle Scholar
  20. Capaday, C., & Stein, R. B. (1987). A method for simulating the reflex output of a motoneuron pool. Journal of Neuroscience Methods, 21, 91–104.PubMedGoogle Scholar
  21. Capek, R., & Esplin, B. (1977). Homosynaptic depression and transmitter turnover in spinal monosynaptic pathway. Journal of Neurophysiology, 40, 95–105.PubMedGoogle Scholar
  22. Carnevale, N. T., & Hines, M. L. (2006). The NEURON Book. Cambridge: Cambridge University Press.Google Scholar
  23. Carr, P. A., Alvarez, F. J., Leman, E. A., & Fyffe, R. E. W. (1998). Calbindin D28k expression in immunohistochemically identified Renshaw cells. Neuroreport, 9, 2657–2661.PubMedCrossRefGoogle Scholar
  24. Chan, K. M., Doherty, T. J., & Brown, W. F. (2001). Contractile properties of human motor units in health, aging, and disease. Muscle and Nerve, 24, 1113–1133.PubMedGoogle Scholar
  25. Chin, L., Yue, P., Feng, J. J., & Seow, C. Y. (2006). Mathematical simulation of muscle cross-bridge cycle and force-velocity relationship. Biophysical Journal, 91, 3653–3663.PubMedGoogle Scholar
  26. Cisi, R. R. L., & Kohn, A. F. (2004). Spinal cord neuronal network simulator. 28th Conference of the Canadian Medical and Biological Engineering Society, Quebec, Canada.Google Scholar
  27. Cisi, R. R. L., & Kohn, A. F. (2007). H-reflex depression simulated by a biologically realistic motoneuron network. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France.Google Scholar
  28. Clamann, H. P. (1969). Statistical analysis of motor unit firing patterns in a human skeletal muscle. Biophysical Journal, 9, 1233–1251.PubMedGoogle Scholar
  29. Cleveland, S., Kuschmierz, A., & Ross, H. G. (1981). Static input-output relations in the spinal recurrent inhibitory pathway. Biological Cybernetics, 40, 223–231.PubMedGoogle Scholar
  30. Cooper, S. (1966). Muscle spindles and motor units. In B. L. Andrew (Ed.) Control and innervation of skeletal muscle (pp. 9–17). Edinburgh: Livingstone.Google Scholar
  31. Cox, D. R., & Isham, V. (1980). Point processes. London: Chapman and Hall.Google Scholar
  32. Cox, D. R., & Lewis, P. A. W. (1966). The statistical analysis of series of events. London: Methuen.Google Scholar
  33. Cullheim, S., & Kellerth, J. O. (1978). Morphological-study of axons and recurrent axon collaterals of cat alpha-motoneurones supplying different functional types of muscle unit. Journal of Physiology, 281, 301–313.PubMedGoogle Scholar
  34. Dai, Y., Jones, K. E., Fedirchuk, B., McCrea, D. A., & Jordan, L. M. (2002). A modelling study of locomotion-induced hyperpolarization of voltage threshold in cat lumbar motoneurones. Journal of Physiology, 544, 521–536.PubMedGoogle Scholar
  35. Datta, A. K., Farmer, S. F., & Stephens, J. A. (1991). Central nervous pathways underlying synchronization of human motor unit firing studied during voluntary contractions. Journal of Physiology, 432, 401–425.PubMedGoogle Scholar
  36. De Luca, C. J., Foley, P. J., & Erim, Z. (1996). Motor unit properties in constant-force isometric contractions. Journal of Neurophysiology, 76, 1503–1516.PubMedGoogle Scholar
  37. De Luca, C. J., & Forrest, W. J. (1973). Some properties of motor unit action potential trains recorded during constant force isometric contractions in man. Kybernetik, 12, 160–168.PubMedGoogle Scholar
  38. Destexhe, A. (1997). Conductance-based integrate-and-fire models. Neural Computation, 9, 503–514.PubMedGoogle Scholar
  39. Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994a). An efficient method for computing synaptic conductances based on a kinetic-model of receptor-binding. Neural Computation, 6, 14–18.Google Scholar
  40. Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994b). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1, 195–230.PubMedGoogle Scholar
  41. Dum, R. P., & Kennedy, T. T. (1980). Physiological and histochemical-characteristics of motor units in cat tibialis anterior and extensor digitorum longus muscles. Journal of Neurophysiology, 43, 1615–1630.PubMedGoogle Scholar
  42. Feinstein, B., Lindegard, B., Nyman, E., & Wohlfart, G. (1955). Morphologic studies of motor units in normal human muscles. Acta Anatomica, 23, 127–142.PubMedGoogle Scholar
  43. Finkel, A. S., & Redman, S. J. (1983). The synaptic current evoked in cat spinal motoneurones by impluses in single group Ia axons. Journal of Physiology, 342, 615–632.PubMedGoogle Scholar
  44. Fleshman, J. W., Segev, I., & Burke, R. E. (1988). Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal cord. Journal of Neurophysiology, 60, 60–85.PubMedGoogle Scholar
  45. Floeter, M. K., & Kohn, A. F. (1997). H-Reflex of different sizes exhibit differential sensitivity to low frequency depression. Electroencephalography and Clinical Neurophysiology, 105, 470–475.PubMedGoogle Scholar
  46. Friedman, W. A., Sypert, G. M., Munson, J. B., & Fleshman, J. W. (1981). Recurrent inhibition in type-identified motoneurons. Journal of Neurophysiology, 46, 1349–1359.PubMedGoogle Scholar
  47. Fuglevand, A. J., Winter, D., & Patla, A. E. (1993). Models of recruitment and rate coding organization in motor-unit pools. Journal of Neurophysiology, 70, 2470–2488.PubMedGoogle Scholar
  48. Fuglevand, A. J., Winter, D. A., Patla, A. E., & Stashuk, D. (1992). Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing. Biological Cybernetics, 67, 143–153.PubMedGoogle Scholar
  49. Garnett, R. A. F., O’Donovan, M. J., Stephens, J. A., & Taylor, A. (1979). Motor Unit Organization of Human Medial Gastrocnemius. Journal of Physiology, 287, 33–43.PubMedGoogle Scholar
  50. Giugliano, M. (2000). Synthesis of generalized algorithms for the fast computation of synaptic conductances with Markov kinetic models in large network simulations. Neural Computation, 12, 903–931.PubMedGoogle Scholar
  51. Halonen, J. P., Falck, B., & Kalino, H. (1981). The firing rate of motor units in neuromuscular disorders. Journal of Neurophysiology, 225, 269–276.Google Scholar
  52. Heckman, C.J., Gorassini, M.A., & Bennett, D.J. (2005). Persistent inward currents in motoneuron dendrites: implications for motor output. Muscle and Nerve, 31, 135–156.Google Scholar
  53. Henneman, E., Somjen, G., & Carpenter, D. O. (1965). Excitability and inhibitability of motoneurons of different sizes. Journal of Neurophysiology, 28, 599–620.PubMedGoogle Scholar
  54. Hermens, J. H., Baten, C. T. M., Boom, H. B. K., & Rutten, W. L. C. (1992). Distribution of MUAP amplitude and duration estimated from surface EMG. Proceedings of the 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Paris, France.Google Scholar
  55. Hines, M. L., Eichner, H., & Schurmann, F. (2008). Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors. Journal of Computational Neuroscience (in press).Google Scholar
  56. Hultborn, H., Katz, R., & Mackel, R. (1988). Distribution of recurrent inhibition within a motor nucleus. II. Amount of recurrent inhibition in motoneurones to fast and slow units. Acta Physiologica Scandinavica, 34, 363–374.Google Scholar
  57. Hultborn, H., & Pierrot-Deseilligny, E. (1979). Input–output relations in the pathways of recurrent inhibition to motoneurones in the cat. Journal of Physiology, 297, 267–287.PubMedGoogle Scholar
  58. Ivashko, D. G., Prilutsky, B. I., Markin, S. N., Chapin, J. K., & Rybak, I. A. (2003). Modeling the spinal cord neural circuitry controlling cat hindlimb movement during locomotion. Neurocomputing, 52–4, 621–629.Google Scholar
  59. Jankowska, E. (1992). Interneuronal relay in spinal pathways from proprioceptors. Progress in Neurobiology, 38, 335–378.PubMedGoogle Scholar
  60. Jankowska, E., & Hammar, I. (2002). Spinal interneurones; how can studies in animals contribute to the understanding of spinal interneuronal systems in man? Brain Research Reviews, 40, 19–28.PubMedGoogle Scholar
  61. Jimenez, J., Easton, J. K., & Redford, J. B. (1970). Conduction studies of the anterior and posterior tibial nerves. Archives of Physical Medicine and Rehabilitation, 51, 164–169.PubMedGoogle Scholar
  62. Johnson, M. A., Polgar, J., Weightman, D., & Appleton, D. (1973). Data on the distribution of fibre types in thirty-six human muscles an autopsy study. Journal of Neurological Sciences, 18, 111–129.Google Scholar
  63. Kernell, D. (1965). High-frequency repetitive firing of cat lumbosacral motoneurones stimulates by long-lasting injected currents. Acta Physiologica Scandinavica, 65, 74–86.Google Scholar
  64. Kernell, D. (1972). The early phase of adaptation in repetitive impulse discharges of cat spinal motoneurones. Brain Research, 41, 184–186.PubMedGoogle Scholar
  65. Kernell, D. (1986). Organization and properties of spinal motoneurones and motor units. Progress in Brain Research, 64, 21–30.PubMedCrossRefGoogle Scholar
  66. Kernell, D., Eerbeek, O., & Verhey, B. A. (1983). Relation between isometric force and stimulus rate in cat’s hindlimb motor units of different twitch contraction time. Experimental Brain Research, 50, 220–227.Google Scholar
  67. Kernell, D., & Monster, A. W. (1982). Time course and properties of late adaptation in spinal motoneurones of the cat. Experimental Brain Research, 46, 191–196.Google Scholar
  68. Kohn, A. F., Floeter, M. K., & Hallet, M. (1995). A model-based approach for the quantification of H reflex depression in humans. Proceedings of the 17th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Montreal, Canada.Google Scholar
  69. Kohn, A. F., Floeter, M. K., & Hallett, M. (1997). Presynaptic inhibition compared with homosynaptic depression as an explanation for soleus H-reflex depression in humans. Experimental Brain Research, 116, 375–380.Google Scholar
  70. Lo Conte, L. R., Merletti, R., & Sandri, G. V. (1994). Hermite expansions of compact support waveforms: applications to myoelectric signals. IEEE Transactions on Biomedical Engineering, 41, 1147–1159.PubMedGoogle Scholar
  71. Lowery, M. M., & Erim, Z. (2005). A simulation study to examine the effect of common motoneuron inputs on correlated patterns of motor unit discharge. Journal of Computational Neuroscience, 19, 107–124.PubMedGoogle Scholar
  72. Lytton, W. W. (1996). Optimizing synaptic conductance calculation for network simulations. Neural Computation, 8, 501–509.PubMedGoogle Scholar
  73. Macefield, V. G., Fuglevand, J., & Bigland-Ritchie, B. (1996). Contractile properties of single motor units in human toe extensor assessed by intraneural motor axon stimulation. Journal of Neurophysiology, 75, 2509–2519.PubMedGoogle Scholar
  74. MacGregor, R. (1987). Neural and brain modeling. New York: Academic.Google Scholar
  75. Maganaris, C. N., Baltzopoulos, V., & Sargeant, A. (1998). In vivo measurement of the triceps surae complex architecture in man: implications for muscle function. Journal of Physiology, 512, 603–614.PubMedGoogle Scholar
  76. Maltenfort, M. G., Heckman, C. J., & Rymer, W. Z. (1998). Decorrelating actions of Renshaw interneurons on the firing of spinal motoneurons within a motor nucleus: a simulation study. Journal of Neurophysiology, 80, 309–323.PubMedGoogle Scholar
  77. McComas, A. J. (1991). Invited review: motor unit estimation: methods, results and present status. Muscle and Nerve, 14, 585–597.PubMedGoogle Scholar
  78. McCurdy, M. L., & Hamm, T. M. (1994a). Spatial and temporal features of recurrent facilitation among motoneurons innervating synergistic muscle of the cat. Journal of Neurophysiology, 72, 227–234.PubMedGoogle Scholar
  79. McCurdy, M. L., & Hamm, T. M. (1994b). Topography of recurrent inhibition postsynaptic potentials between individual motoneurons in the cat. Journal of Neurophysiology, 72, 214–226.PubMedGoogle Scholar
  80. Meunier, S., Kwon, J., Russmann, H., Ravindran, S., Mazzocchio, R., & Cohen, L. (2007). Spinal use-dependent plasticity of synaptic transmission in humans after a single cycling session. Journal of Physiology, 579, 375–388.PubMedGoogle Scholar
  81. Mileusnic, M. P., Brown, I. E., Lan, N., & Loeb, G. E. (2006). Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle. Journal of Neurophysiology, 96, 1772–1788.PubMedGoogle Scholar
  82. Mileusnic, M. P., & Loeb, G. E. (2006). Mathematical models of proprioceptors. II. Structure and function of the Golgi tendon organ. Journal of Neurophysiology, 96, 1789–1802.PubMedGoogle Scholar
  83. Misiaszek, J. E. (2003). The H-reflex as a tool in neurophysiology: its limitations and uses in understanding nervous system function. Muscle and Nerve, 28, 144–160.PubMedGoogle Scholar
  84. Mochizuki, G., Ivanova, T. D., & Garland, S. J. (2005). Synchronization of motor units in human soleus muscle during standing postural tasks. Journal of Neurophysiology, 94, 62–69.PubMedGoogle Scholar
  85. Moritz, C. T., Barry, B. K., Pascoe, M. A., & Enoka, R. M. (2005). Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. Journal of Neurophysiology, 93, 2449–2459.PubMedGoogle Scholar
  86. Nussbaumer, R. M., Ruegg, D. G., Studer, L. M., & Gabriel, J. P. (2002). Computer simulation of the motoneuron pool-muscle complex. I. Input system and motoneuron pool. Biological Cybernetics, 86, 317–333.PubMedGoogle Scholar
  87. Oppenheim, A. V., Schafer, R. W., & Buck, J. R. (1999). Discrete-time signal processing. New Jersey: Prentice Hall.Google Scholar
  88. Otazu, G. H., Futami, R., & Hoshimiya, N. (2001). A muscle activation model of variable stimulation frequency response and stimulation history, based on positive feedback in calcium dynamics. Biological Cybernetics, 84, 193–206.PubMedGoogle Scholar
  89. Person, R. S., & Kudina, L. P. (1972). Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle. Electroencephalography and Clinical Neurophysiology, 32, 471–483.PubMedGoogle Scholar
  90. Pierrot-Deseilligny, E., & Burke, D. (2005). The circuitry of the human spinal cord. New York: Cambridge University Press.Google Scholar
  91. Plonsey, R. (1974). The active fiber in a volume conductor. IEEE Transactions on Biomedical Engineering, 21, 371–381.PubMedGoogle Scholar
  92. Poliakov, A. V., Miles, T. S., & Nordstrom, M. A. (1995). Discharge patterns of tonically firing human motoneurons. Biological Cybernetics, 73, 189–194.PubMedGoogle Scholar
  93. Powers, R. K. (1993). A variable-threshold motoneuron model that incorporates time and voltage-dependent potassium and calcium conductances. Journal of Neurophysiology, 70, 246–262.PubMedGoogle Scholar
  94. Powers, R. K., Sawczuk, A., Musick, J. R., & Binder, M. D. (1999). Multiple mechanisms of spike-frequency adaptation in motoneurones. Journal of Physiology - Paris, 93, 101–114.Google Scholar
  95. Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. Journal of Neurophysiology, 30, 1138–1168.PubMedGoogle Scholar
  96. Rall, W., Burke, R. E., Holmes, W. R., Jack, J. J. B., Redman, S. J., & Segev, I. (1992). Matching dendritic neuron models to experimental-data. Physiological Reviews, 72, S159–S186.PubMedGoogle Scholar
  97. Rosenfalck, A., & Andreassen, S. (1980). Impaired regulation of force and firing pattern of single motor units in patients with spasticity. Journal of Neurology, Neurosurgery and Psychiatry, 43, 907–916.Google Scholar
  98. Schwindt, P. C., & Crill, W. E. (1984). Membrane properties of cat spinal motoneurons. Handbook of the Spinal Cord, 2/3, 199–242.Google Scholar
  99. Scott, J. G., & Mendell, L. M. (1976). Individual Epsps produced by single triceps surae Ia afferent-fibers in homonymous and heteronymous motoneurons. Journal of Neurophysiology, 39, 679–692.PubMedGoogle Scholar
  100. Siebert, T., Rode, C., Herzog, W., Till, O., & Blickhan, R. (2008). Nonlinearities make a difference: comparison of two common Hill-type models with real muscle. Biological Cybernetics, 98, 133–143.PubMedGoogle Scholar
  101. Stegeman, D. F., Merletti, R., & Hermens, H. J. (2004). EMG modeling and simulation. Electromyography. In R. Merletti, & P. A. Parker (Eds.) Physiology, engineering and noninvasive applications. Hoboken: Wiley.Google Scholar
  102. Stienen, A. H., Schouten, A. C., Schuurmans, J., & van der Helm, F. C. (2007). Analysis of reflex modulation with a biologically realistic neural network. Journal of Computational Neuroscience, 23, 333–348.PubMedGoogle Scholar
  103. Stuart, G. J., & Redman, S. J. (1990). Voltage dependence of Ia reciprocal inhibitory currents in cat spinal motoneurones. Journal of Physiology, 420, 111–125.PubMedGoogle Scholar
  104. Subramanian, K., Okey, P., Miller, M., & Bashor, D. (2005). NVIZ: An integrated environment for simulation, visualization and analysis of spinal neuronal dynamics. Journal of Imaging Science and Technology, 49, 505–519.Google Scholar
  105. Taylor, A. M., & Enoka, R. M. (2004). Quantification of the factors that influence discharge correlation in model motor neurons. Journal of Neurophysiology, 91, 796–814.PubMedGoogle Scholar
  106. Uchiyama, T., Johansson, H., & Windhorst, U. (2003). A model of the feline medial gastrocnemius motoneuron-muscle system subjected to recurrent inhibition. Biological Cybernetics, 89, 139–151.PubMedGoogle Scholar
  107. Uchiyama, T., & Windhorst, U. (2007). Effects of spinal recurrent inhibition on motoneuron short-term synchronization. Biological Cybernetics, 96, 561–575.PubMedGoogle Scholar
  108. Van Zandwijk, J. P., Bobbert, M. F., Baan, G. C., & Huijing, P. A. (1996). From twitch to tetanus: performance of excitation dynamics optimized for a twitch in predicted tetanic muscle forces. Biological Cybernetics, 75, 409–417.PubMedGoogle Scholar
  109. Vanderhorst, V. G., & Holstege, G. (1997). Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat. Journal of Comparative Neurology, 382, 46–76.PubMedGoogle Scholar
  110. Vandervoort, A. A., & McComas, A. J. (1983). A comparison of the contractile properties of the human gastrocnemius and soleus muscles. European Journal of Applied Physiology and Occupational Physiology, 51, 435–440.PubMedGoogle Scholar
  111. Vieira, M. F., & Kohn, A. F. (2007). Compartmental models of mammalian motoneurons of types S, FR and FF and their computer simulation. Computers in Biology and Medicine, 37, 842–860.PubMedGoogle Scholar
  112. Walmsley, B., & Tracey, D. J. (1981). An intracellular study of Renshaw cells. Brain Research, 223, 170–175.PubMedGoogle Scholar
  113. Windhorst, U. (1990). Activation of Renshaw cells. Progress in Neurobiology, 35, 135–179.PubMedGoogle Scholar
  114. Windhorst, U. (1996). On the role of recurrent inhibitory feedback in motor control. Progress in Neurobiology, 49, 517–587.PubMedGoogle Scholar
  115. Yao, W., Fuglevand, R. J., & Enoka, R. M. (2000). Motor-unit synchronization increases EMG amplitude and decreases force steadiness of simulated contractions. Journal of Neurophysiology, 83, 441–452.PubMedGoogle Scholar
  116. Zengel, J. E., Reid, S. A., Sypert, G. W., & Munson, J. B. (1985). Membrane electrical-properties and prediction of motor-unit type of medial gastrocnemius motoneurons in the cat. Journal of Neurophysiology, 53, 1323–1344.PubMedGoogle Scholar
  117. Zhou, P., & Rymer, W. Z. (2004). MUAP number estimates in surface EMG: template-matching methods and their performance boundaries. Annals of Biomedical Engineering, 32, 1007–1015.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Biomedical Engineering Laboratory, Escola PolitécnicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations