Modeling of quantal neurotransmitter release kinetics in the presence of fixed and mobile calcium buffers

  • Iskander R. Gilmanov
  • Dmitry V. Samigullin
  • František VyskočilEmail author
  • Eugeny E. Nikolsky
  • Ellya A. Bukharaeva


The local calcium concentration in the active zone of secretion determines the number and kinetics of neurotransmitter quanta released after the arrival of a nerve action potential in chemical synapses. The small size of mammalian neuromuscular junctions does not allow direct measurement of the correlation between calcium influx, the state of endogenous calcium buffers determining the local concentration of calcium and the time course of quanta exocytosis. In this work, we used computer modeling of quanta release kinetics with various levels of calcium influx and in the presence of endogenous calcium buffers with varying mobilities. The results of this modeling revealed the desynchronization of quanta release under low calcium influx in the presence of an endogenous fixed calcium buffer, with a diffusion coefficient much smaller than that of free Ca2+, and synchronization occurred upon adding a mobile buffer. This corresponds to changes in secretion time course parameters found experimentally (Samigullin et al., Physiol Res 54:129–132, 2005; Bukharaeva et al., J Neurochem 100:939–949, 2007).


Neuromuscular junction Mathematical modeling Time course of secretion Calcium buffers 



time course of secretion


1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid tetrakis acetoxymethyl ester



We thank Dr. Maria Bykhovskaia and Dr. Andrey Skorinkin for critical reading of the manuscript. Supported by GAAVA5011411, GACR305/02/1333, and MSMT11310003 for FV, by RFBR 08-04-00923, Russian Scientific Schools—4177.2008.4 for EN, by “Russian Science Support Foundation” for DS, by US Civilian Research and Development Foundation (RUB1-2823-KA06) for EB and DS.


  1. Ahmed, Z., & Connor, J. (1988). Calcium regulation by and buffer capacity of molluscan neurons during calcium transients. Cell Calcium, 9, 57–69.PubMedCrossRefGoogle Scholar
  2. Allana, T., & Lin, J.-W. (2004). Relative distribution of Ca2+ channels at the crayfish inhibitory neuromuscular junction. Journal of Neurophysiology, 92, 1491–5000.PubMedCrossRefGoogle Scholar
  3. Augustine, G. J. (2001). How does calcium trigger neurotransmitter release? Current Opinion in Neurobiology, 11, 320–326.PubMedCrossRefGoogle Scholar
  4. Augustine, G. J., & Neher, E. (1992a). Calcium requirements for secretion in bovine chromaffin cells. Journal of Physiology, 450, 247–271.PubMedGoogle Scholar
  5. Augustine, G. J., & Neher, E. (1992b) Neuronal Ca2+ signaling takes the local route. Current Opinion in Neurobiology, 2, 302–307.PubMedCrossRefGoogle Scholar
  6. Barrett, E. F., & Stevens, C. F. (1972). The kinetics of transmitter release at the frog neuromuscular junction. Journal of Physiology, 227, 691–708.PubMedGoogle Scholar
  7. Bennett, M. R., Farnell, L., & Gibson, W. G. (2000). The probability of quantal secretion near a single calcium channel of an active zone. Biophysical Journal, 78, 2201–2221.PubMedGoogle Scholar
  8. Bi, G., & Poo, M. (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18, 10464–10472.PubMedGoogle Scholar
  9. Bukharaeva, E., Samigullin, D., Nikolsky, E., & Magazanik, L. (2007). Modulation of the kinetics of evoked quantal release at mouse neuromuscular junctions by calcium and strontium. Journal of Neurochemistry, 100, 939–949.PubMedCrossRefGoogle Scholar
  10. Bukharaeva, E., Samigullin, D., Nikolsky, E., & Vyskočil, F. (2002). Protein kinase A cascade regulates quantal release dispersion at frog muscle endplate. Journal of Physiology, 538, 837–848.PubMedCrossRefGoogle Scholar
  11. Burnashev, N., & Rozov, A. (2005). Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy. Cell Calcium, 37, 489–495.PubMedCrossRefGoogle Scholar
  12. Chow, R., Klingauf, J., & Neher, E. (1994). Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. Proceedings of the National Academy of Sciences of the United States of America, 91, 12765–12769.PubMedCrossRefGoogle Scholar
  13. Collin, T., Chat, M., Lucas, M., Moreno, H., Racay, P., Schwaller, B., et al. (2005). Developmental changes in parvalbumin regulate presynaptic Ca2+ signaling. Journal of Neuroscience, 25, 96–107.PubMedCrossRefGoogle Scholar
  14. Dodge, J., & Rahamimoff, R. (1967). Co-operative action a Ca2+ in transmitter release at the neuromuscular junction. Journal of Physiology, 193, 419–432.PubMedGoogle Scholar
  15. Glavinovich, M., & Rabie, H. (2001). Monte Carlo evaluation of quantal analysis in the light of Ca2+ dynamics and the geometry of secretion. Pflügers Archiv—European Journal of Physiology, 443, 132–145.CrossRefGoogle Scholar
  16. Feher, J., Fulmer, C., & Fritzsch, G. (1989). Comparison of the enhanced steady-state diffusion of calcium by calbindin-D9K and calmodulin, possible importance in intestinal calcium absorption. Cell Calcium, 10, 189–203.PubMedCrossRefGoogle Scholar
  17. Gabso, M., Neher, E., & Spira, M. (1997). Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons. Neuron, 18, 473–481.PubMedCrossRefGoogle Scholar
  18. Giniatullin, R., Kheeroug, L., & Vyskočil, F. (1995). Modelling endplate current: Dependence on quantum secretion probability and postsynaptic miniature current parameters. European Journal of Biophysics, 23, 443–446.CrossRefGoogle Scholar
  19. Hilt, D., & Kligman, D. (1991). The S-100 protein family, a biochemical and functional overview. Novel calcium-binding proteins (pp. 65–103). Berlin: Springer.Google Scholar
  20. Katz, B. (1968). The role of calcium in neuromuscular facilitation. Journal of Physiology, 195, 481–492.PubMedGoogle Scholar
  21. Katz, B., & Miledi, R. (1965). The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proceedings of the Royal Society of London. Series B, Biological Sciences, 161, 483–495.PubMedGoogle Scholar
  22. Kits, K., de Vlieger, T., Kooi, B., & Mansvelder, H. (1999). Diffusion barriers limit the effect of mobile calcium buffers on exocytosis of large dense cored vesicles. Biophysical Journal, 76, 1693–1705.PubMedGoogle Scholar
  23. Klingauf, J., & Neher, E. (1997). Modeling buffered Ca2+ diffusion near the membrane, implications for secretion in neuroendocrine cells. Biophysical Journal, 72, 674–690.PubMedGoogle Scholar
  24. Lee, S., Schwaller, B., & Neher, E. (2000). Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells, implications for [Ca2+] transients of neuronal dendrites. Journal of Physiology, 525, 419–432.PubMedCrossRefGoogle Scholar
  25. Lin, J. W., & Farber, S. (2002). Modulation of synaptic delay during synaptic plasticity. Trends in Neuroscience, 25, 449–455.CrossRefGoogle Scholar
  26. Lin, J. W., Fu, Q., & Allana, T. (2005). Probing the endogenous Ca2+ buffers at the presynaptic terminals of the crayfish neuromuscular junction. Journal of Neurophysiology, 94, 377–386.PubMedCrossRefGoogle Scholar
  27. Markram, H., Lubke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–216.PubMedCrossRefGoogle Scholar
  28. Matveev, V., Sherman, A., & Zucker, R. (2002). New and corrected simulations of synaptic facilitation. Biophysical Journal, 83, 1368–1373.PubMedGoogle Scholar
  29. Matveev, V., Zucker, R., & Sherman, A. (2004). Facilitation through buffer saturation, constraints on endogenous buffering properties. Biophysical Journal, 86, 2691–2709.PubMedGoogle Scholar
  30. Meinrenken, C., Borst, J., & Sakmann, B. (2002). Calcium secretion coupling at Calyx of Held governed by nonuniform channel-vesicle topography. Journal of Neuroscience, 22, 1648–1667.PubMedGoogle Scholar
  31. Muller, A., Kukley, M., Stausberg, P., Beck, H., Muller, W., & Dietrich, D. (2005). Endogenous Ca2+ buffer concentration and Ca2+ microdomains in hippocampal neurons. Journal of Neuroscience, 25, 558–565.PubMedCrossRefGoogle Scholar
  32. Muller, M., Felmy, F., Schwaller, B., & Schneggenburger, R. (2007). Parvalbumin is a mobile presynaptic Ca2+ buffer in the Calyx of Held that accelerates the decay of Ca2+ and short-term facilitation. Journal of Neuroscience, 27, 2261–2271.PubMedCrossRefGoogle Scholar
  33. Nauki, H., Sakumura, Y., & Ishii, S. (2005). Local signaling with molecular diffusion as a decoder of Ca2+ signals in synaptic plasticity. Molecular Systems Biology, 1, 0027.Google Scholar
  34. Neher, E. (1995). The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology, 34, 1423–1442.PubMedCrossRefGoogle Scholar
  35. Nowycky, M., & Pinter, M. (1993). Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. Biophysical Journal, 64, 77–91.PubMedGoogle Scholar
  36. Parnas, H., Dudel, J., & Parnas, I. (1986). Neurotransmitter release and its facilitation in crayfish. V. Another voltage-dependent process beside Ca entry controls the time course of phasic release. Pflügers Archiv, 406, 121–130.PubMedCrossRefGoogle Scholar
  37. Sabatini, B., & Regehr, W. (1999). Timing of synaptic transmission. Annuual Review Physiology, 61, 521–42CrossRefGoogle Scholar
  38. Sala, F., & Hernandez-Cruz, A. (1990). Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. Biophysical Journal, 57, 313–324.PubMedGoogle Scholar
  39. Samigullin, D., Bukharaeva, E., Vyskočil, F., & Nikolsky, E. (2005). Calcium dependence of uni-quantal release latencies and quantal content at mouse neuromuscular junction. Physiological Researches, 54, 129–132.Google Scholar
  40. Schmidt, H., Stiefel, K., Racay, P., Schwaller, B., & Eilers, J. (2003). Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells, role of parvalbumin and calbindin D28k. Journal of Physiology, 551, 13–32.PubMedCrossRefGoogle Scholar
  41. Schneggenburger, R., & Neher, E. (2000). Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature, 406, 889–893.PubMedCrossRefGoogle Scholar
  42. Schneggenburger, R., & Neher, E. (2005). Presynaptic calcium and control of vesicle fusion. Current Opinion in Neurobiology, 15, 266–274.PubMedCrossRefGoogle Scholar
  43. Segura, J., Gil, A., & Soria, B. (2000). Modeling study of exocytosis in neuroendocrine cells, influence of the geometrical parameters. Biophysical Journal, 79, 1771–1786.PubMedGoogle Scholar
  44. Shahrezaei, V., & Delaney, K. R. (2004). Consequences of molecular-level Ca2+ channel and synaptic vesicle colocalization for the Ca2+ microdomain and neurotransmitter exocytosis: A Monte Carlo study. Biophysical Journal, 87, 2352–2364.PubMedCrossRefGoogle Scholar
  45. Shahrezaei, V., Cao, A., & Delaney, K. (2006). Ca2+ from one or two channels controls fusion of a single vesicle at the frog neuromuscular junction. Journal of Neuroscience, 26, 13240–13249.PubMedCrossRefGoogle Scholar
  46. Soucek, B. (1971). Influence of latency fluctuations and the quantal process of transmitter release on the end-plate potential’s amplitude distribution. Biophysical Journal, 11, 127–139.PubMedCrossRefGoogle Scholar
  47. Stockbridge, N., & Moore, J. (1984). Dynamics of intracellular calcium and its possible relationship to phasic transmitter release and facilitation at the frog neuromuscular junction. Journal of Neuroscience, 4, 803–811.PubMedGoogle Scholar
  48. Stuenkel, E. (1994). Regulation of intracellular calcium and calcium buffering properties of rat isolated neurohypophysial nerve endings. Journal of Physiology, 481, 251–271.PubMedGoogle Scholar
  49. Tang, Y., Schlumpberger, T., Kim, T., Lueker, M., & Zucker, R. (2000). Effects of mobile buffers on facilitation, experimental and computational studies. Biophysical Journal, 78, 2735–2751.PubMedGoogle Scholar
  50. Van der Kloot, W. (1988). The kinetics of quantal releases during end-plate currents at the frog neuromuscular junction. Journal of Physiology, 402, 605–626.PubMedGoogle Scholar
  51. Yamada, W., & Zucker, R. (1992). Time course of transmitter release calculated from simulations of a calcium diffusion model. Biophysical Journal, 61, 671–682.PubMedGoogle Scholar
  52. Zhou, Z., & Neher, E. (1993). Mobile and immobile calcium buffers in bovine adrenal chromaffine cells. Journal of Physiology, 469, 245–273.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Iskander R. Gilmanov
    • 1
  • Dmitry V. Samigullin
    • 1
  • František Vyskočil
    • 2
    • 3
    Email author
  • Eugeny E. Nikolsky
    • 1
    • 4
  • Ellya A. Bukharaeva
    • 1
    • 4
  1. 1.Institute of Biochemistry and BiophysicsRussian Academy of SciencesKazanRussia
  2. 2.Department of Animal Physiology and Developmental Biology, Faculty of SciencesCharles UniversityPrague 2Czech Republic
  3. 3.Institute of PhysiologyAcademy of Sciences of the Czech RepublicPrague 4Czech Republic
  4. 4.Kazan State Medical UniversityKazanRussia

Personalised recommendations