Journal of Computational Neuroscience

, Volume 25, Issue 1, pp 89–107 | Cite as

Biased competition through variations in amplitude of γ-oscillations

Article

Abstract

Experiments in visual cortex have shown that the firing rate of a neuron in response to the simultaneous presentation of a preferred and non-preferred stimulus within the receptive field is intermediate between that for the two stimuli alone (stimulus competition). Attention directed to one of the stimuli drives the response towards the response induced by the attended stimulus alone (selective attention). This study shows that a simple feedforward model with fixed synaptic conductance values can reproduce these two phenomena using synchronization in the gamma-frequency range to increase the effective synaptic gain for the responses to the attended stimulus. The performance of the model is robust to changes in the parameter values. The model predicts that the phase locking between presynaptic input and output spikes increases with attention.

Keywords

Selective attention Stimulus competition Coherence Temporal correlated spike input 

References

  1. Beaulieu, C., Kisvarday, Z., Somogyi, P., Cynader, M., & Cowey, A. (1992). Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). Cerebral Cortex, 2(4), 295–309.CrossRefPubMedGoogle Scholar
  2. Buia, C., & Tiesinga, P. (2006). Attentional modulation of firing rate and synchrony in a model cortical network. Journal of Computational Neuroscience, 20(3), 247–264.CrossRefPubMedGoogle Scholar
  3. Bushnell, M. C., Goldberg, M. E., & Robinson, D. C. (1981). Behavioral enhancement of visual responses in monkey cerebral cortex. I modulation in posterior parietal cortex related to selective visual attention. Journal of Neurophysiology, 46(4), 755–772.PubMedGoogle Scholar
  4. Chelazzi, L., Duncan, J., Miller, E. K., & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80, 2918–2940.PubMedGoogle Scholar
  5. Chelazzi, L., Miller, E. K., Duncan, J., & Desimone, R. (2001). Responses of neurons in macaque area V4 during memory-guide visual search. Cerebral Cortex, 11, 761–772.CrossRefPubMedGoogle Scholar
  6. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature reviews, Neuroscience, 3, 201–215.CrossRefGoogle Scholar
  7. Deco, G., & Rolls, E. (2005). Neurodynamics of biased competition and cooperation for attention: A model with spiking neurons. Journal of Neurophysiology, 94, 295–313.CrossRefPubMedGoogle Scholar
  8. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.CrossRefPubMedGoogle Scholar
  9. Destexhe, A., & Paré, D. (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81, 1531–1547.PubMedGoogle Scholar
  10. Destexhe, A., Rudolph, M., Fellous, J.-M., & Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreated in vivo-like activity in neocortical neurons. Neuroscience, 107(1), 13–24.CrossRefPubMedGoogle Scholar
  11. Eckhorn, R., Frien, A., Bauer, R., Woelbern, T., & Kehr, H. (1993). High frequency (60–90 Hz) oscillations in primary visual cortex of awake monkey. NeuroReport, 4, 243–246.CrossRefPubMedGoogle Scholar
  12. Frien, A., Eckhorn, R., Bauer, R., Woelbern, T., & Kehr, H. (1994). Stimulus specific fast oscillations at zero phase between areas V1 and V2 of awake monkey. NeuroReport, 5, 2273–2277.CrossRefPubMedGoogle Scholar
  13. Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291, 1560–1563.CrossRefPubMedGoogle Scholar
  14. Gray, C. M., König, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties. Nature, 338, 334–337.CrossRefPubMedGoogle Scholar
  15. Gawne, T. J., & Martin, J. M. (2002). Responses of primate visual cortical V4 Neurons to simultaneously presented stimuli. Journal of Neurophysiology, 88, 1128–1135.CrossRefPubMedGoogle Scholar
  16. Higley, M. J., & Contreras, D. (2005). Balanced excitation and inhibition determine spike timing during frequency adaptation. Journal of Neuroscience, 26(2), 448–457.CrossRefGoogle Scholar
  17. Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural computation, 9, 1179–1209.CrossRefPubMedGoogle Scholar
  18. Kreiter, A. K., & Singer, W. (1996). Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. Journal of Neuroscience, 16(7), 2381–2396.PubMedGoogle Scholar
  19. Lachaux, J. P., Rodriguez, E., Martinerie, J., & Varela, F. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8, 194–208.CrossRefPubMedGoogle Scholar
  20. Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2 and V4 of macaque visual cortex. Journal of Neurophysiology, 77, 24–72.PubMedGoogle Scholar
  21. Maldonado, P. E., Friedman-Hill, S., & Gray, C. (2000). Dynamics of striate cortical activity in the alert macaque: II. fast time scale synchronization. Cerebral Cortex, 10(11), 1117–1131.CrossRefPubMedGoogle Scholar
  22. Marmarelis, P. Z., & Marmarelis, V. Z. (1978). Analysis of physiological systems: The white-noise approach. New York: Plenum Press.Google Scholar
  23. Martinez, D. (2006). Oscillatory synchronization requires precise and balanced feedback inhibition in a model of the insect antennal lobe. Neural Computation, 17, 2548–2570.CrossRefGoogle Scholar
  24. McAdam, C. J., & Maunsell, J. H. R. (1999). Effects of attention on orientation-tuning function of single neurons in macaque cortical area V4. Journal of Neuroscience, 19(1), 431– 441.Google Scholar
  25. Miller, E. K., Gochin, P. M., & Gross, C. G. (1993). Suppression of visual responses of neurons in inferior temporal cortex of a awake macaque by addition of a second stimulus. Brain Research, 616, 25–29.CrossRefPubMedGoogle Scholar
  26. Mishra, J., Fellous, J.-M., & Sejnowski, T. J. (2006). Selective attention through phase relationship of excitatory and inhibitory input synchrony in a model cortical neuron. Neural Networks, 19, 1329–1346.CrossRefPubMedGoogle Scholar
  27. Mitra, P. P., & Pesaran, B. (1999). Analysis of dynamic brain imaging data. Biophysical Journal, 76(2), 691–708.PubMedGoogle Scholar
  28. Moore, T., & Amstrong, K. M. (2003). Selective gating of visual signals by microstimulation of frontal cortex. Nature, 421, 370–373.CrossRefPubMedGoogle Scholar
  29. Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate xortex. Science, 229, 782– 784.CrossRefPubMedGoogle Scholar
  30. Motter, B. C. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2 and V4 in the presence of competing stimuli. Journal of Neurophysiology, 70(3), 909–919.PubMedGoogle Scholar
  31. Reynolds, J., Chelazzi, L., & Desimone, R. (1999). Competitive mechanisms subserve attention in macaque areas V2 and V4. Journal of Neuroscience, 19(5), 1736–1753.PubMedGoogle Scholar
  32. Reynolds, J. H., & Desimone, R. (2003). Interacting roles of attention and visual salience in V4. Neuron, 37, 853–863.CrossRefPubMedGoogle Scholar
  33. Roelfsema, P. R., Lamme, V. A. F., & Spekreijse, H. (2004). Synchrony and covariation of firing rates in the primary visual cortex during contour grouping. Nature Neuroscience, 7(9), 982–991.CrossRefPubMedGoogle Scholar
  34. Rolls, E. T., & Tovee, M. J. (1995). The responses of single neurons in the temporal visual cortical areas of the macaque when more than one stimulus is present in the receptive field. Experimental Brain Research, 103, 409–420.CrossRefGoogle Scholar
  35. Rols, G., Tallon-Baudry, C., Girard, P., Bertrand, O., & Bullier, J. (2001). Cortical mapping of gamma oscillations in areas V1 and V4 of the macaque monkey. Visual Neuroscience, 18(4), 527–540.CrossRefPubMedGoogle Scholar
  36. Schoffelen, J. M., Oostenveld, R., & Fries, F. (2005). Neuronal coherence as a mechanism of effective corticospinal interaction. Science, 308(5718), 111–113.CrossRefPubMedGoogle Scholar
  37. Smith, A. T., Singh, A. L., Williams, A. L., & Greenlee, M. W. (2002). Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. Cerebral Cortex, 11, 1182–1190.CrossRefGoogle Scholar
  38. Smiyukha, Y., Mandon, F., Galashan, F. O., Neitzel, S. D., & Kreiter, A. (2006). Attention-dependent switching of interareal synchronization between V4 neurons and different subpopulations of their V1 afferents. Soc. Neurosci. Abtract, 32, 11.2.Google Scholar
  39. Spitzer, H., Desimone, R., & Moran, J. (1988). Increased attention enhances both behavioural and neuronal performance. Science, 240(4850), 338–340.CrossRefPubMedGoogle Scholar
  40. Tass, P., Rosenblum, M. G., Weule, J., Kurths, J., Pikovsky, A., Volkmann, J., et al. (1998). Detection of n:m phase locking from noisy data: Application to magnetoencephalography. Physical Review Letters, 81(15), 3291–3294.CrossRefGoogle Scholar
  41. Taylor, K., Mandon, S., Freiwald, W. A., & Kreiter, A. K. (2005). Coherent oscillatory activity in monkey area V4 predicts successfull allocation of attention. Cerebral Cortex, 15(9), 1424–1437.CrossRefPubMedGoogle Scholar
  42. Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70, 1055–1096.CrossRefGoogle Scholar
  43. Tiesinga, P. H. E. (2005). Stimulus competition by inhibitory interference. Neural Computation, 17, 2421–2453.CrossRefPubMedGoogle Scholar
  44. Traub, R. D., & Miles, R. (1991). Neuronal networks of the hippocampus. Cambridge, UK: Cambridge Univ. Press.Google Scholar
  45. Treue, S., & Martinez Trujillo, J. C. (1999). Feature-based attention influences motion processing Gain in macaque visual cortex. Nature, 399, 575–579.CrossRefPubMedGoogle Scholar
  46. Treue, S., & Maunsell, J. H. R. (1996). Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382, 539–541.CrossRefPubMedGoogle Scholar
  47. Treue, S., & Maunsell, J. H. R. (1999). Effects of attention on the processing of motion in macaque visual cortical areas MT and MST. Journal of Neuroscience, 19(17), 7603–7616.Google Scholar
  48. van der Togt, C., Kalitzin, S., Spekreijse, H., Lamme, V. A. F., & Super, H. (2006). Synchrony dynamics in monkey V1 predicts success in visual detection. Cerebral Cortex, 16(1), 136–148.CrossRefPubMedGoogle Scholar
  49. Tsodyks, M., Pawelzik, K., & Makram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10, 821–835.CrossRefPubMedGoogle Scholar
  50. Tsodyks, M., Uziel, A., & Makram, H. (2000). Synchrony generation in recurrent networks with frequency-dependent synapses. Journal of Neuroscience, 20(RC50), 1–5.Google Scholar
  51. Womelsdorf, T., Fries, P., Mitra, P. P., & Desimone, R. (2006). Gamma-band synchronization in visual cortex predicts speed of change detection. Nature, 439, 733–736.CrossRefPubMedGoogle Scholar
  52. Zeitler, M., Fries, P., & Gielen, S. (2006). Assessing neuronal coherence with single-unit, multi-unit and local field potentials. Neural Computation, 18(9), 2256–2281.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.Department of Biophysics, Institute for NeuroscienceRadboud University NijmegenNijmegenThe Netherlands
  2. 2.F.C. Donders Centre for Cognitive NeuroimagingRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations