Journal of Computational Neuroscience

, Volume 25, Issue 1, pp 25–38 | Cite as

Lateral dendritic shunt inhibition can regularize mitral cell spike patterning

  • François David
  • Christiane Linster
  • Thomas A. Cleland


Mitral cells, the principal output neurons of the olfactory bulb, receive direct synaptic activation from primary sensory neurons. Shunting inhibitory inputs delivered by granule cell interneurons onto mitral cell lateral dendrites, while poorly positioned to prevent spike initiation, are believed to influence spike timing and underlie coordinated field potential oscillations. We investigated this phenomenon in a reduced compartmental mitral cell model suitable for incorporation into network simulations. Lateral dendritic shunt conductances delayed spiking to a degree dependent on both their electrotonic distance and phase of onset. Moreover, when the afferent activation of mitral cells was loosely coordinated in time, recurrent inhibition significantly narrowed the distribution of mitral cell spike times, illustrating a tendency towards coordinated synchronous activity. However, if mitral cell activity was initially disorganized, recurrent inhibition actually increased the variance in spike timing. This result suggests an essential role for early mechanisms of temporal coordination in olfaction, such as sniffing and the initial synchronization of mitral cell intrinsic oscillations by periglomerular cell-mediated inhibition.


GABAA Granule cell Synchronization Olfactory bulb Shunt inhibition 


  1. Anton, P. S., Granger, R., & Lynch, G. (1993). Simulated dendritic spines influence reciprocal synaptic strengths and lateral inhibition in the olfactory bulb. Brain Research, 628, 157–165.PubMedCrossRefGoogle Scholar
  2. Aungst, J. L., Heyward, P. M., Puche, A. C., Karnup, S. V., Hayar, A., Szabo, G., et al. (2003). Centre-surround inhibition among olfactory bulb glomeruli. Nature, 426, 623–629.PubMedCrossRefGoogle Scholar
  3. Balu, R., Pressler, R. T., & Strowbridge, B. W. (2007). Multiple modes of synaptic excitation of olfactory bulb granule cells. Journal of Neuroscience, 27, 5621–5632.PubMedCrossRefGoogle Scholar
  4. Bathellier, B., Lagier, S., Faure, P., & Lledo, P. M. (2006). Circuit properties generating gamma oscillations in a network model of the olfactory bulb. Journal of Neurophysiology, 95, 2678–2691.PubMedCrossRefGoogle Scholar
  5. Bhalla, U. S., & Bower, J. M. (1993). Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. Journal of Neurophysiology, 69, 1948–1965.PubMedGoogle Scholar
  6. Brody, C. D., & Hopfield, J. J. (2003). Simple networks for spike-timing-based computation, with application to olfactory processing. Neuron, 37, 843–852.PubMedCrossRefGoogle Scholar
  7. Cang, J., & Isaacson, J. S. (2003). In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. Journal of Neuroscience, 23, 4108–4116.PubMedGoogle Scholar
  8. Chen, W. R., Shen, G. Y., Shepherd, G. M., Hines, M. L., & Midtgaard, J. (2002). Multiple modes of action potential initiation and propagation in mitral cell primary dendrite. Journal of Neurophysiology, 88, 2755–2764.PubMedCrossRefGoogle Scholar
  9. Cleland, T. A., & Linster, C. (2002). How synchronization properties among second-order sensory neurons can mediate stimulus salience. Behavioral Neuroscience, 116, 212–221.PubMedCrossRefGoogle Scholar
  10. Cleland, T. A., & Linster, C. (2005). Computation in the olfactory system. Chemical Senses, 30, 801–813.PubMedCrossRefGoogle Scholar
  11. Cleland, T. A., & Sethupathy, P. (2006). Non-topographical contrast enhancement in the olfactory bulb. BMC Neuroscience, 7, 7.PubMedCrossRefGoogle Scholar
  12. Davison, A. P., Feng, J., & Brown, D. (2000). A reduced compartmental model of the mitral cell for use in network models of the olfactory bulb. Brain Research Bulletin, 51, 393–399.PubMedCrossRefGoogle Scholar
  13. Davison, A. P., Feng, J., & Brown, D. (2003). Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. Journal of Neurophysiology, 90, 1921–1935.PubMedCrossRefGoogle Scholar
  14. Debarbieux, F., Audinat, E., & Charpak, S. (2003). Action potential propagation in dendrites of rat mitral cells in vivo. Journal of Neuroscience, 23, 5553–5560.PubMedGoogle Scholar
  15. Desmaisons, D., Vincent, J. D., & Lledo, P. M. (1999). Control of action potential timing by intrinsic subthreshold oscillations in olfactory bulb output neurons. Journal of Neuroscience, 19, 10727–10737.PubMedGoogle Scholar
  16. Eeckman, F. H., & Freeman, W. J. (1990). Correlations between unit firing and EEG in the rat olfactory system. Brain Research, 528, 238–244.PubMedCrossRefGoogle Scholar
  17. Egger, V., Svoboda, K., & Mainen, Z. F. (2003). Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. Journal of Neuroscience, 23, 7551–7558.PubMedGoogle Scholar
  18. Egger, V., Svoboda, K., & Mainen, Z. F. (2005). Dendrodendritic synaptic signals in olfactory bulb granule cells: Local spine boost and global low-threshold spike. Journal of Neuroscience, 25, 3521–3530.PubMedCrossRefGoogle Scholar
  19. Galan, R. F., Ermentrout, G. B., & Urban, N. N. (2005). Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Physical Review Letter, 94, 158101.CrossRefGoogle Scholar
  20. Galan, R. F., Fourcaud-Trocme, N., Ermentrout, G. B., & Urban, N. N. (2006). Correlation-induced synchronization of oscillations in olfactory bulb neurons. Journal of Neuroscience, 26, 3646–3655.PubMedCrossRefGoogle Scholar
  21. Jahr, C. E., & Nicoll, R. A. (1982). An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. Journal of Physiology, 326, 213–234.PubMedGoogle Scholar
  22. Lagier, S., Carleton, A., & Lledo, P. M. (2004). Interplay between local GABAergic interneurons and relay neurons generates gamma oscillations in the rat olfactory bulb. Journal of Neuroscience, 24, 4382–4392.PubMedCrossRefGoogle Scholar
  23. Laurent, G. (2002). Olfactory network dynamics and the coding of multidimensional signals. Nature Reviews, Neuroscience, 3, 884–895.CrossRefGoogle Scholar
  24. Lestienne, R., Tuckwell, H. C., Chalansonnet, M., & Chaput, M. (1999). Repeating triplets of spikes and oscillations in the mitral cell discharges of freely breathing rats. European Journal of Neuroscience, 11, 3185–3193.PubMedCrossRefGoogle Scholar
  25. Li, Z. (1990). A model of olfactory adaptation and sensitivity enhancement in the olfactory bulb. Biological Cybernetics, 62, 349–361.PubMedCrossRefGoogle Scholar
  26. Li, Z., & Hopfield, J. J. (1989). Modeling the olfactory bulb and its neural oscillatory processings. Biological Cybernetics, 61, 379–392.PubMedCrossRefGoogle Scholar
  27. Linster, C., & Gervais, R. (1996). Investigation of the role of interneurons and their modulation by centrifugal fibers in a neural model of the olfactory bulb. Journal of Computational Neuroscience, 3, 225–246.PubMedCrossRefGoogle Scholar
  28. Linster, C., & Hasselmo, M. (1997). Modulation of inhibition in a model of olfactory bulb reduces overlap in the neural representation of olfactory stimuli. Behavioral Brain Research, 84, 117–127.CrossRefGoogle Scholar
  29. Lowe, G. (2003). Flash photolysis reveals a diversity of ionotropic glutamate receptors on the mitral cell somatodendritic membrane. Journal of Neurophysiology, 90, 1737–1746.PubMedCrossRefGoogle Scholar
  30. Margrie, T. W., & Schaefer, A. T. (2003). Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system. Journal of Physiology, 546, 363–374.PubMedCrossRefGoogle Scholar
  31. Migliore, M., Hines, M. L., & Shepherd, G. M. (2005). The role of distal dendritic gap junctions in synchronization of mitral cell axonal output. Journal of Computational Neuroscience, 18, 151–161.PubMedCrossRefGoogle Scholar
  32. Nusser, Z., Kay, L. M., Laurent, G., Homanics, G. E., & Mody, I. (2001). Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network. Journal of Neurophysiology, 86, 2823–2833.PubMedGoogle Scholar
  33. Pressler, R. T., & Strowbridge, B. W. (2006). Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb. Neuron, 49, 889–904.PubMedCrossRefGoogle Scholar
  34. Rall, W., & Shepherd, G. M. (1968). Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. Journal of Neurophysiology, 31, 884–915.PubMedGoogle Scholar
  35. Rinberg, D., Koulakov, A., & Gelperin, A. (2006). Sparse odor coding in awake behaving mice. Journal of Neuroscience, 26, 8857–8865.PubMedCrossRefGoogle Scholar
  36. Rubin, D. B., & Cleland, T. A. (2006). Dynamical mechanisms of odor processing in olfactory bulb mitral cells. Journal of Neurophysiology, 96, 555–568.PubMedCrossRefGoogle Scholar
  37. Schoppa, N. E. (2006a). AMPA/kainate receptors drive rapid output and precise synchrony in olfactory bulb granule cells. Journal of Neuroscience, 26, 12996–13006.CrossRefGoogle Scholar
  38. Schoppa, N. E. (2006b). Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs. Neuron, 49, 271–283.CrossRefGoogle Scholar
  39. Schoppa, N. E., Kinzie, J. M., Sahara, Y., Segerson, T. P., & Westbrook, G. L. (1998). Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors. Journal of Neuroscience, 18, 6790–6802.PubMedGoogle Scholar
  40. Usrey, W. M., Alonso, J. M., & Reid, R. C. (2000). Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. Journal of Neuroscience, 20, 5461–5467.PubMedGoogle Scholar
  41. Zelles, T., Boyd, J. D., Hardy, A. B., & Delaney, K. R. (2006). Branch-specific Ca2+ influx from Na+-dependent dendritic spikes in olfactory granule cells. Journal of Neuroscience, 26, 30–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • François David
    • 1
    • 2
  • Christiane Linster
    • 1
  • Thomas A. Cleland
    • 3
  1. 1.Department of Neurobiology and BehaviorCornell UniversityIthacaUSA
  2. 2.Neurosciences Sensorielles Comportement CognitionCNRS-Université Claude Bernard Lyon 1Lyon Cedex 07France
  3. 3.Department of PsychologyCornell UniversityIthacaUSA

Personalised recommendations