Journal of Computational Neuroscience

, Volume 24, Issue 3, pp 374–397 | Cite as

A modeling comparison of projection neuron- and neuromodulator-elicited oscillations in a central pattern generating network

  • Nickolas Kintos
  • Michael P. Nusbaum
  • Farzan Nadim
Article

Abstract

Many central pattern generating networks are influenced by synaptic input from modulatory projection neurons. The network response to a projection neuron is sometimes mimicked by bath applying the neuronally-released modulator, despite the absence of network interactions with the projection neuron. One interesting example occurs in the crab stomatogastric ganglion (STG), where bath applying the neuropeptide pyrokinin (PK) elicits a gastric mill rhythm which is similar to that elicited by the projection neuron modulatory commissural neuron 1 (MCN1), despite the absence of PK in MCN1 and the fact that MCN1 is not active during the PK-elicited rhythm. MCN1 terminals have fast and slow synaptic actions on the gastric mill network and are presynaptically inhibited by this network in the STG. These local connections are inactive in the PK-elicited rhythm, and the mechanism underlying this rhythm is unknown. We use mathematical and biophysically-realistic modeling to propose potential mechanisms by which PK can elicit a gastric mill rhythm that is similar to the MCN1-elicited rhythm. We analyze slow-wave network oscillations using simplified mathematical models and, in parallel, develop biophysically-realistic models that account for fast, action potential-driven oscillations and some spatial structure of the network neurons. Our results illustrate how the actions of bath-applied neuromodulators can mimic those of descending projection neurons through mathematically similar but physiologically distinct mechanisms.

Keywords

Model Central pattern generator Stomatogastric ganglion Neuromodulation Phase plane 

References

  1. Ambrosio-Mouser, C., Nadim, F., & Bose, A. (2006). The effects of varying the timing of inputs on a neuronal oscillator. SIAM Journal of Applied Dynamical Systems, 5, 108–139.CrossRefGoogle Scholar
  2. Angstadt, J. D., & Calabrese, R. L. (1989). A hyperpolarization-activated inward current in heart interneurons of the medicinal leech. Journal of Neuroscience, 9, 2846–2857.PubMedGoogle Scholar
  3. Angstadt, J. D., & Calabrese, R. L. (1991). Calcium currents and graded synaptic transmission between heart interneurons of the leech. Journal of Neuroscience, 11, 746–759.PubMedGoogle Scholar
  4. Bartos, M., Manor, Y., Nadim, F., Marder, E., & Nusbaum, M. P. (1999). Coordination of fast and slow rhythmic neuronal circuits. Journal of Neuroscience, 19, 6650–6660.PubMedGoogle Scholar
  5. Baxter, D. A., Canavier, C. C., Clark Jr., J. W., & Byrne, J. H. (1999). Computational model of the serotonergic modulation of sensory neurons in Aplysia. Journal of Neurophysiology, 82, 2914–2935.PubMedGoogle Scholar
  6. Beenhakker, M. P., DeLong, N. D., Saideman, S. R., Nadim, F., & Nusbaum, M. P. (2005). Proprioceptor regulation of motor circuit activity by presynaptic inhibition of a modulatory projection neuron. Journal of Neuroscience, 25, 8794–8806.PubMedCrossRefGoogle Scholar
  7. Bertram, R. (1994). Reduced-system analysis of the effects of serotonin on a molluscan burster neuron. Biological Cybernetics, 70, 359–368.PubMedCrossRefGoogle Scholar
  8. Blitz, D. M., Beenhakker, M. P., & Nusbaum, M. P. (2004). Different sensory systems share projection neurons but elicit distinct motor patterns. Journal of Neuroscience, 24, 11381–11390.PubMedCrossRefGoogle Scholar
  9. Blitz, D. M., Christie, A. E., Coleman, M. J., Norris, B. J., Marder, E., & Nusbaum, M. P. (1999). Different proctolin neurons elicit distinct motor patterns from a multifunctional neuronal network. Journal of Neuroscience, 19, 5449–5463.PubMedGoogle Scholar
  10. Butera Jr., R. J., Clark Jr., J. W., Canavier, C. C., Baxter, D. A., & Byrne, J. H. (1995). Analysis of the effects of modulatory agents on a modeled bursting neuron: Dynamic interactions between voltage and calcium dependent systems. Journal of Computational Neuroscience, 2, 19–44.PubMedCrossRefGoogle Scholar
  11. Calabrese, R. L. (1999). Taking the lead from a model. Current Biology, 9, R680–R683.PubMedCrossRefGoogle Scholar
  12. Canavier, C. C., Baxter, D. A., Clark, J. W., & Byrne, J. H. (1994). Multiple modes of activity in a model neuron suggest a novel mechanism for the effects of neuromodulators. Journal of Neurophysiology, 72, 872–882.PubMedGoogle Scholar
  13. Coleman, M. J., Meyrand, P., & Nusbaum, M. P. (1995). A switch between two modes of synaptic transmission mediated by presynaptic inhibition. Nature, 378, 502–505.PubMedCrossRefGoogle Scholar
  14. De Schutter, E., Angstadt, J. D., & Calabrese, R. L. (1993). A model of graded synaptic transmission for use in dynamic network simulations. Journal of Neurophysiology, 69, 1225–1235.PubMedGoogle Scholar
  15. Deliagina, T. G., Zelenin, P. V., & Orlovsky, G. N. (2002). Encoding and decoding of reticulospinal commands. Brain Research Brain Research Review, 40, 166–177.CrossRefGoogle Scholar
  16. Dickinson, P. S. (2006). Neuromodulation of central pattern generators in invertebrates and vertebrates. Current Opinion in Neurobiology, 16, 604–614.PubMedCrossRefGoogle Scholar
  17. Dzirasa, K., Ribeiro, S., Costa, R., Santos, L. M., Lin, S. C., Grosmark, A., et al. (2006). Dopaminergic control of sleep–wake states. Journal of Neuroscience, 26, 10577–10589.PubMedCrossRefGoogle Scholar
  18. Ermentrout, G. B. (2002). Simulating, analyzing, and animating dynamical systems: A guide to Xppaut for researchers and students (software, environments, tools). Philadelphia: SIAM.Google Scholar
  19. Goldman, M. S., Golowasch, J., Marder, E., & Abbott, L. F. (2001). Global structure, robustness, and modulation of neuronal models. Journal of Neuroscience, 21, 5229–5238.PubMedGoogle Scholar
  20. Golowasch, J., & Marder, E. (1992). Proctolin activates an inward current whose voltage dependence is modified by extracellular Ca2+. Journal of Neuroscience, 12, 810–817.PubMedGoogle Scholar
  21. Grillner, S. (2006). Biological pattern generation: The cellular and computational logic of networks in motion. Neuron, 52, 751–766.Google Scholar
  22. Grillner, S., Markram, H., De Schutter, E., Silberberg, G., & LeBeau, F. E. (2005). Microcircuits in action—from CPGs to neocortex. Trends in Neurosciences, 28, 525–533.PubMedCrossRefGoogle Scholar
  23. Guckenheimer, J., Gueron, S., & Harris-Warrick, R. M. (1993). Mapping the dynamics of a bursting neuron. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 341, 345–359.PubMedCrossRefGoogle Scholar
  24. Jing, J., & Weiss, K. R. (2005). Generation of variants of a motor act in a modular and hierarchical motor network. Current Biology, 15, 1712–1721.PubMedCrossRefGoogle Scholar
  25. Kiehn, O. (2006). Locomotor circuits in the mammalian spinal cord. Annual Review of Neuroscience, 29, 279–306.PubMedCrossRefGoogle Scholar
  26. Kintos, N., Nadim, F., Saideman, S., & Nusbaum, M. P. (2006). Comparing projection neuron and neuromodulatory effects on network activity using a computational model. SfN 36th Annual Meeting, Atlanta, GA.Google Scholar
  27. LeBeau, F. E., El Manira, A., & Griller, S. (2005). Tuning the network: Modulation of neuronal microcircuits in the spinal cord and hippocampus. Trends in Neurosciences, 28, 552–561.PubMedCrossRefGoogle Scholar
  28. Lieske, S. P., Thoby-Brisson, M., Telgkamp, P., & Ramirez, J. M. (2000). Reconfiguration of the neural network controlling multiple breathing patterns: Eupnea, sighs and gasps [see comment]. Nature Neuroscience, 3, 600–607.PubMedCrossRefGoogle Scholar
  29. Manor, Y., Nadim, F., Epstein, S., Ritt, J., Marder, E., & Kopell, N. (1999). Network oscillations generated by balancing graded asymmetric reciprocal inhibition in passive neurons. Journal of Neuroscience, 19, 2765–2779.PubMedGoogle Scholar
  30. Marder, E., & Bucher, D. (2007). Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annual Review of Physiology, 69, 291–316.PubMedCrossRefGoogle Scholar
  31. Marder, E., Bucher, D., Schulz, D. J., & Taylor, A. L. (2005). Invertebrate central pattern generation moves along. Current Biology, 15, R685–R699.PubMedCrossRefGoogle Scholar
  32. Marder, E., & Thirumalai, V. (2002). Cellular, synaptic and network effects of neuromodulation. Neural Networks, 15, 479–493.PubMedCrossRefGoogle Scholar
  33. Mishchenko, E. F., & Rozov, N. K. (1980). Differential equations with small parameters and relaxation oscillators. New York: Plenum.Google Scholar
  34. Morgan, P. T., Perrins, R., Lloyd, P. E., & Weiss, K. R. (2000). Intrinsic and extrinsic modulation of a single central pattern generating circuit. Journal of Neurophysiology, 84, 1186–1193.PubMedGoogle Scholar
  35. Nadim, F., & Calabrese, R. L. (1997). A slow outward current activated by FMRFamide in heart interneurons of the medicinal leech. Journal of Neuroscience, 17, 4461–4472.PubMedGoogle Scholar
  36. Nadim, F., Manor, Y., Nusbaum, M. P., & Marder, E. (1998). Frequency regulation of a slow rhythm by a fast periodic input. Journal of Neuroscience, 18, 5053–5067.PubMedGoogle Scholar
  37. Norris, B. J., Coleman, M. J., & Nusbaum, M. P. (1994). Recruitment of a projection neuron determines gastric mill motor pattern selection in the stomatogastric nervous system of the crab, Cancer borealis. Journal of Neurophysiology, 72, 1451–1463.PubMedGoogle Scholar
  38. Nusbaum, M. P., & Beenhakker, M. P. (2002). A small-systems approach to motor pattern generation. Nature, 417, 343–350.PubMedCrossRefGoogle Scholar
  39. Nusbaum, M. P., Blitz, D. M., Swensen, A. M., Wood, D., & Marder, E. (2001). The roles of co-transmission in neural network modulation. Trends in Neurosciences, 24, 146–154.PubMedCrossRefGoogle Scholar
  40. Peck, J. H., Gaier, E., Stevens, E., Repicky, S., & Harris-Warrick, R. M. (2006). Amine modulation of Ih in a small neural network. Journal of Neurophysiology, 96, 2931–2940.PubMedCrossRefGoogle Scholar
  41. Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7, 1345–1352.PubMedCrossRefGoogle Scholar
  42. Rossignol, S., Dubuc, R., & Gossard, J. P. (2006). Dynamic sensorimotor interactions in locomotion. Physiological Reviews, 86, 89–154.PubMedCrossRefGoogle Scholar
  43. Saideman, S. (2006). Circuit-specific modulation by neuroactive peptides. Neuroscience. Philadelphia, PA: University of Pennsylvania.Google Scholar
  44. Saideman, S. R., Blitz, D. M., & Nusbaum, M. P. (2007a). Convergent motor patterns from divergent circuits. Journal of Neuroscience, 27, 6664–6674.PubMedCrossRefGoogle Scholar
  45. Saideman, S. R., Ma, M., Kutz-Naber, K. K., Cook, A., Torfs, P., Schoofs, L., et al. (2007b). Modulation of rhythmic motor activity by pyrokinin peptides. Journal of Neurophysiology, 97, 579–595.PubMedCrossRefGoogle Scholar
  46. Skiebe, P. (2001). Neuropeptides are ubiquitous chemical mediators: Using the stomatogastric nervous system as a model system. Journal of Experimental Biology, 204, 2035–2048.PubMedGoogle Scholar
  47. Stein, W., DeLong, N. D., Wood, D. E., & Nusbaum, M. P. (2007). Divergent cotransmitter actions underlie motor pattern activation by a modulatory projection neuron. European Journal of Neuroscience, 26, 1148–1165.Google Scholar
  48. Swensen, A. M., & Marder, E. (2000). Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit. Journal of Neuroscience, 20, 6752–6759.PubMedGoogle Scholar
  49. Swensen, A. M., & Marder, E. (2001). Modulators with convergent cellular actions elicit distinct circuit outputs. Journal of Neuroscience, 21, 4050–4058.PubMedGoogle Scholar
  50. Wood, D. E., Manor, Y., Nadim, F., & Nusbaum, M. P. (2004). Intercircuit control via rhythmic regulation of projection neuron activity. Journal of Neuroscience, 24, 7455–7463.PubMedCrossRefGoogle Scholar
  51. Wood, D. E., Stein, W., & Nusbaum, M. P. (2000). Projection neurons with shared cotransmitters elicit different motor patterns from the same neural circuit. Journal of Neuroscience, 20, 8943–8953.PubMedGoogle Scholar
  52. Zhou, L., Zhao, S., & Nadim, F. (2007). Neuromodulation of short-term synaptic dynamics examined in a mechanistic model based on kinetics of calcium currents. Neurocomputing, 70, 2050–2054.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Nickolas Kintos
    • 1
  • Michael P. Nusbaum
    • 2
  • Farzan Nadim
    • 1
    • 3
  1. 1.Department of Mathematical SciencesNew Jersey Institute of TechnologyNewarkUSA
  2. 2.Department of NeuroscienceUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  3. 3.Department of Biological SciencesRutgers UniversityNewarkUSA
  4. 4.Department of MathematicsFordham UniversityNew YorkUSA

Personalised recommendations