Advertisement

Journal of Computational Neuroscience

, Volume 24, Issue 3, pp 277–290 | Cite as

Distributed representation of perceptual categories in the auditory cortex

  • Heesoo Kim
  • Shaowen Bao
Article

Abstract

Categorical perception is a process by which a continuous stimulus space is partitioned to represent discrete sensory events. Early experience has been shown to shape categorical perception and enlarge cortical representations of experienced stimuli in the sensory cortex. The present study examines the hypothesis that enlargement in cortical stimulus representations is a mechanism of categorical perception. Perceptual discrimination and identification behaviors were analyzed in model auditory cortices that incorporated sound exposure-induced plasticity effects. The model auditory cortex with over-representations of specific stimuli exhibited categorical perception behaviors for those specific stimuli. These results indicate that enlarged stimulus representations in the sensory cortex may be a mechanism for categorical perceptual learning.

Keywords

Categorical perception Sensory cortex Learning 

Notes

Acknowledgements

The work was supported by a grant from US National Institute of Health.

Reference

  1. Anderson, J. A., Silverstein, J. W., Ritz, S. A., & Jones, R. S. (1977). Distinctive features, categorical perception, and probability learning: some applications of a neural model. Psychological Review, 84, 413–451.CrossRefGoogle Scholar
  2. Bala, A. D., Spitzer, M. W., & Takahashi, T. T. (2003). Prediction of auditory spatial acuity from neural images on the owl's auditory space map. Nature, 424(6950), 771–774.PubMedCrossRefGoogle Scholar
  3. Bao, S., Chan, V. T., & Merzenich, M. M. (2001). Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412(6842), 79–83.PubMedCrossRefGoogle Scholar
  4. Bao, S., Chang, E. F., Woods, J., & Merzenich, M. M. (2004). Temporal plasticity in the primary auditory cortex induced by operant perceptual learning. Nature Neuroscience, 7(9), 974–981.PubMedCrossRefGoogle Scholar
  5. Beitel, R. E., Schreiner, C. E., Cheung, S. W., Wang, X., & Merzenich, M. M. (2003). Reward-dependent plasticity in the primary auditory cortex of adult monkeys trained to discriminate temporally modulated signals. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 11070–11075.PubMedCrossRefGoogle Scholar
  6. Blake, D. T., Heiser, M. A., Caywood, M., & Merzenich, M. M. (2006). Experience-dependent adult cortical plasticity requires cognitive association between sensation and reward. Neuron, 52(2), 371–381.PubMedCrossRefGoogle Scholar
  7. Bornstein, M. H., Kessen, W., & Weiskopf, S. (1976). The categories of hue in infancy. Science, 191(4223), 201–202.PubMedCrossRefGoogle Scholar
  8. Brown, M., Irvine, D. R., & Park, V. N. (2004). Perceptual learning on an auditory frequency discrimination task by cats: association with changes in primary auditory cortex. Cerebral Cortex, 14(9), 952–965.PubMedCrossRefGoogle Scholar
  9. Burns, E. M., & Ward, W. D. (1978). Categorical perception–phenomenon or epiphenomenon: evidence from experiments in the perception of melodic musical intervals. Journal of the Acoustical Society of America, 63(2), 456–468.PubMedCrossRefGoogle Scholar
  10. Chang, E. F., & Merzenich, M. M. (2003). Environmental noise retards auditory cortical development. Science, 300(5618), 498–502.PubMedCrossRefGoogle Scholar
  11. Cherniak, C. (1990). The bounded brain: toward quantitive neuroanatomy. Journal of Cognitive Neuroscience, 2, 58–68.CrossRefGoogle Scholar
  12. Chowdhury, S. A., & Suga, N. (2000). Reorganization of the frequency map of the auditory cortex evoked by cortical electrical stimulation in the big brown bat. Journal of Neurophysiology, 83(4), 1856–1863.PubMedGoogle Scholar
  13. Crozier, J. B. (1997). Absolute pitch: practice makes perfect, the earlier the better. Psychology of Music, 25, 110–119.CrossRefGoogle Scholar
  14. Dayan, P., & Abbott, L. F. (2001). Theoretical Neuroscience. Cambridge, MA: The MIT Press.Google Scholar
  15. DeWeese, M. R., Wehr, M., & Zador, A. M. (2003). Binary spiking in auditory cortex. Journal of Neuroscience, 23(21), 7940–7949.PubMedGoogle Scholar
  16. Edeline, J. M., & Weinberger, N. M. (1993). Receptive field plasticity in the auditory cortex during frequency discrimination training: selective retuning independent of task difficulty. Behavioral Neuroscience, 107(1), 82–103.PubMedCrossRefGoogle Scholar
  17. Ehret, G. (1992). Categorical perception of mouse-pup ultrasounds in the temporal domain. Animal Behaviour, 43(3), 409–416.CrossRefGoogle Scholar
  18. Ehret, G., & Haack, B. (1981). Categorical perception of mouse pup ultrasound by lactating females. Naturwissenschaften, 68(4), 208–209.PubMedCrossRefGoogle Scholar
  19. Eimas, P. D. (1974). Auditory and linguistic processing of cues for place of articulation by infants. Perception & Psychophysics, 16, 564–570.Google Scholar
  20. Engineer, N. D., Percaccio, C. R., Pandya, P. K., Moucha, R., Rathbun, D. L., & Kilgard, M. P. (2004). Environmental enrichment im-proves response strength, threshold, selectivity, and latency of auditory cortex neurons. Journal of Neurophysiology, 92(1), 73–82.PubMedCrossRefGoogle Scholar
  21. Erickson, C. A., Jagadeesh, B., & Desimone, R. (2000). Clustering of perirhinal neurons with similar properties following visual experience in adult monkeys. Nature Neuroscience, 3(11), 1143–1148.PubMedCrossRefGoogle Scholar
  22. Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2001). Categorical representation of visual stimuli in the primate prefrontal cortex. Science, 291(5502), 312–316.PubMedCrossRefGoogle Scholar
  23. Fritz, J., Shamma, S., Elhilali, M., & Klein, D. (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6(11), 1216–1223.PubMedCrossRefGoogle Scholar
  24. Goldstone, R. (1994). Influences of categorization on perceptual discrimination. Journal of Experimental Psychology General, 123(2), 178–200.PubMedCrossRefGoogle Scholar
  25. Green, D. M., & Swets, J. A. (1966). Singal detection theory and psychophysics. New York: Wiley.Google Scholar
  26. Grier, J. B. (1971). Nonparametric indexes for sensitivity and bias: computing formulas. Psychological Bulletin, 75(6), 424–429.PubMedCrossRefGoogle Scholar
  27. Harnad, S. R. (1987). Categorical perception: the groundwork of cognition. Cambridge: Cambridge University Press.Google Scholar
  28. Harnad, S. (2003). Categorical perception. In L. Nadel (Ed.), Encyclopedia of cognitive science. London: Macmillan.Google Scholar
  29. Harnad, S., Hanson, S. J., & Lubin, J. (1991). Categorical perception and the evolution of supervised learning in neural nets. In L. Reeker (Ed.), Working Papers of the AAAI Spring Symposium on Machine Learning of Natural Language and Ontology. pp. 65–74. Standford, CA.Google Scholar
  30. Holt, L. L., Lotto, A. J., & Diehl, R. L. (2004). Auditory discontinuities interact with categorization: implications for speech perception. Journal of the Acoustical Society of America, 116(3), 1763–1773.PubMedCrossRefGoogle Scholar
  31. Jazayeri, M., & Movshon, J. A. (2006). Optimal representation of sensory information by neural populations. Nature Neuroscience, 9(5), 690–696.PubMedCrossRefGoogle Scholar
  32. Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279(5357), 1714–1718.PubMedCrossRefGoogle Scholar
  33. Kilgard, M. P., Pandya, P. K., Vazquez, J., Gehi, A., Schreiner, C. E., & Merzenich, M. M. (2001). Sensory input directs spatial and temporal plasticity in primary auditory cortex. Journal of Neurophysiology, 86(1), 326–338.PubMedGoogle Scholar
  34. Kluender, K. R., Diehl, R. L., & Killeen, P. R. (1987). Japanese quail can learn phonetic categories. Science, 237(4819), 1195–1197.PubMedCrossRefGoogle Scholar
  35. Kuhl, P. K., & Miller, J. D. (1975). Speech perception by the chinchilla: Voiced-voiceless distinction in alveolar plosive consonants. Science, 190(4209), 69–72.PubMedCrossRefGoogle Scholar
  36. Kuhl, P. K., & Padden, D. M. (1982). Enhanced discriminability at the phonetic boundaries for the voicing feature in macaques. Perception & Psychophysics, 32(6), 542–550.Google Scholar
  37. Kuhl, P. K., & Padden, D. M. (1983). Enhanced discriminability at the phonetic boundaries for the place feature in macaques. Journal of the Acoustical Society of America, 73(3), 1003–1010.PubMedCrossRefGoogle Scholar
  38. Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N., & Lindblom, B. (1992). Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 255(5044), 606–608.PubMedCrossRefGoogle Scholar
  39. Lasky, R. E., Syrdal-Lasky, A., & Klein, R. E. (1975). VOT discrimination by four to six and a half month old infants from Spanish environments. Journal of Experimental Child Psychology, 20(2), 215–225.PubMedCrossRefGoogle Scholar
  40. Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54(5), 358–368.PubMedCrossRefGoogle Scholar
  41. Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74(6), 431–461.PubMedCrossRefGoogle Scholar
  42. Livingston, K. R., Andrews, J. K., & Harnad, S. (1998). Categorical perception effects induced by category learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 24(3), 732–753.PubMedCrossRefGoogle Scholar
  43. Luna, R., Hernandez, A., Brody, C. D., & Romo, R. (2005). Neural codes for perceptual discrimination in primary somatosensory cortex. Nature Neuroscience, 8(9), 1210–1219.PubMedCrossRefGoogle Scholar
  44. Ma, X., & Suga, N. (2003). Augmentation of plasticity of the central auditory system by the basal forebrain and/or somatosensory cortex. Journal of Neurophysiology, 89(1), 90–103.PubMedCrossRefGoogle Scholar
  45. MacKay, I. R., Flege, J. E., Piske, T., & Schirru, C. (2001). Category restructuring during second-language speech acquisition. Journal of the Acoustical Society of America, 110(1), 516–528.PubMedCrossRefGoogle Scholar
  46. Massaro, D. W. (1987). Categorical partition: A fussy logical model of categorical behavior. In S. Harnad (Ed.), Categorical perception: the groundwork of cognition. pp. 254–283, Cambridge, UK: Cambrige University Press.Google Scholar
  47. Naatanen, R., Lehtokoski, A., Lennes, M., Cheour, M., Huotilainen, M., Iivonen, A., et al. (1997). Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385(6615), 432–434.PubMedCrossRefGoogle Scholar
  48. Nelson, D. A., & Marler, P. (1989). Categorical perception of a natural stimulus continuum: birdsong. Science, 244(4907), 976–978.PubMedCrossRefGoogle Scholar
  49. Ohl, F. W., & Scheich, H. (1996). Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex (field Al) of the alert Mongolian gerbil. European Journal of Neuroscience, 8(5), 1001–1017.PubMedCrossRefGoogle Scholar
  50. O’Kusky, J., & Colonnier, M. (1982). A laminar analysis of the number of neurons, glia, and synapses in the adult cortex (area 17) of adult macaque monkeys. Journal of Comparative Neurology, 210(3), 278–290.PubMedCrossRefGoogle Scholar
  51. Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392(6678), 811–814.PubMedCrossRefGoogle Scholar
  52. Paradiso, M. A. (1988). A theory for the use of visual orientation information which exploits the columnar structure of striate cortex. Biological Cybernetics, 58(1), 35–49.PubMedCrossRefGoogle Scholar
  53. Pollack, L., & Norman, D. A. (1964). A non-parametric analysis of recognition experiments. Psychonomet Sci, 1, 125–126.Google Scholar
  54. Polley, D. B., Heiser, M. A., Blake, D. T., Schreiner, C. E., & Merzenich, M. M. (2004). Associative learning shapes the neural code for stimulus magnitude in primary auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 101(46), 16351–16356.PubMedCrossRefGoogle Scholar
  55. Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory cortical map reorganization through top–down influences. Journal of Neuroscience, 26(18), 4970–4982.PubMedCrossRefGoogle Scholar
  56. Powell, M. J. D. (1977). A fast algorithm for nonlinearly constrained optimization calculations. In G. A. Watson (Ed.), Numerical analysis. New York: Springer.Google Scholar
  57. Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A., & Dinse, H. R. (1992). Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. Journal of Neurophysiology, 67(5), 1031–1056.PubMedGoogle Scholar
  58. Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience, 13(1), 87–103.PubMedGoogle Scholar
  59. Romo, R., Merchant, H., Zainos, A., & Hernandez, A. (1997). Categorical perception of somesthetic stimuli: psychophysical measurements correlated with neuronal events in primate medial premotor cortex. Cerebral Cortex, 7(4), 317–326.PubMedCrossRefGoogle Scholar
  60. Schoups, A., Vogels, R., Qian, N., & Orban, G. (2001). Practising orientation identification improves orientation coding in V1 neurons. Nature, 412(6846), 549–553.PubMedCrossRefGoogle Scholar
  61. Sengpiel, F., Stawinski, P., & Bonhoeffer, T. (1999). Influence of experience on orientation maps in cat visual cortex. Nature Neuroscience, 2(8), 727–732.PubMedCrossRefGoogle Scholar
  62. Seung, H. S., & Sompolinsky, H. (1993). Simple models for reading neuronal population codes. Proceedings of the National Academy of Sciences of the United States of America, 90(22), 10749–10753.PubMedCrossRefGoogle Scholar
  63. Steinschneider, M., Fishman, Y. I., & Arezzo, J. C. (2003). Representation of the voice onset time (VOT) speech parameter in population responses within primary auditory cortex of the awake monkey. Journal of the Acoustical Society of America, 114(1), 307–321.PubMedCrossRefGoogle Scholar
  64. Takeuchi, A. H., & Hulse, S. H. (1993). Absolute pitch. Psychological Bulletin, 113(2), 345–361.PubMedCrossRefGoogle Scholar
  65. Talwar, S. K., & Gerstein, G. L. (2001). Reorganization in awake rat auditory cortex by local microstimulation and its effect on frequency-discrimination behavior. Journal of Neurophysiology, 86(4), 1555–1572.PubMedGoogle Scholar
  66. Wiesel, T. N. (1982). Postnatal development of the visual cortex and the influence of environment. Nature, 299(5884), 583–591.PubMedCrossRefGoogle Scholar
  67. Williams, L. (1977). The perception of stop consonant voicing by Spanish–English bilinguals. Perception & Psychophysics, 21, 289–297.Google Scholar
  68. Wyttenbach, R. A., May, M. L., & Hoy, R. R. (1996). Categorical perception of sound frequency by crickets. Science, 273(5281), 1542–1544.PubMedCrossRefGoogle Scholar
  69. Zhang, K., Ginzburg, I., McNaughton, B. L., & Sejnowski, T. J. (1998). Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. Journal of Neurophysiology, 79(2), 1017–1044.PubMedGoogle Scholar
  70. Zhang, L. I., Bao, S., & Merzenich, M. M. (2001). Persistent and specific influences of early acoustic environments on primary auditory cortex. Nature Neuroscience, 4(11), 1123–1130.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyUSA

Personalised recommendations