Journal of Computational Neuroscience

, Volume 24, Issue 2, pp 235–252 | Cite as

A simple model of retina-LGN transmission

  • Alexander Casti
  • Fernand Hayot
  • Youping Xiao
  • Ehud Kaplan
Article

Abstract

To gain a deeper understanding of the transmission of visual signals from retina through the lateral geniculate nucleus (LGN), we have used a simple leaky integrate and-fire model to simulate a relay cell in the LGN. The simplicity of the model was motivated by two questions: (1) Can an LGN model that is driven by a retinal spike train recorded as synaptic (‘S’) potentials, but does not include a diverse array of ion channels, nor feedback inputs from the cortex, brainstem, and thalamic reticular nucleus, accurately simulate the LGN discharge on a spike-for-spike basis? (2) Are any special synaptic mechanisms, beyond simple summation of currents, necessary to model experimental recordings? We recorded cat relay cell responses to spatially homogeneous small or large spots, with luminance that was rapidly modulated in a pseudo-random fashion. Model parameters for each cell were optimized with a Simplex algorithm using a short segment of the recording. The model was then tested on a much longer, distinct data set consisting of responses to numerous repetitions of the noisy stimulus. For LGN cells that spiked in response to a sufficiently large fraction of retinal inputs, we found that this simplified model accurately predicted the firing times of LGN discharges. This suggests that modulations of the efficacy of the retino-geniculate synapse by pre-synaptic facilitation or depression are not necessary in order to account for the LGN responses generated by our stimuli, and that post-synaptic summation is sufficient.

Keywords

LGN model Retinogeniculate transmission Integrate and fire S potentials Vision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andolina, I. M., Jones, H. E., Wang, W., & Sillito, A. M. (2007). Corticothalamic feedback enhances stimulus response precision in the visual system. Proceedings of the National Academy of Sciences of the United States of America, 104(5), 1685–1690.PubMedCrossRefGoogle Scholar
  2. Berry, M. J., Warland, D. K., & Meister, M. (1997). The structure and precision of retinal spike trains. Proceedings of the National Academy of Sciences of the United States of America, 94(10), 5411–5416.PubMedCrossRefGoogle Scholar
  3. Bishop, P. O. (1953). Synaptic transmission; an analysis of the electrical activity of the lateral geniculate nucleus in the cat after optic nerve stimulation. Proceedings of the Royal Society of London B, Biological Sciences, 141(904), 362–392.Google Scholar
  4. Blitz, D. M., & Regehr, W. G. (2003). Retinogeniculate synaptic properties controlling spike number and timing in relay neurons. Journal of Neurophysiology, 90(4), 2438–2450.PubMedCrossRefGoogle Scholar
  5. Blitz, D. M., & Regehr, W. G. (2005). Timing and specificity of feed-forward inhibition within the lgn. Neuron, 45(6), 917–928.PubMedCrossRefGoogle Scholar
  6. Carandini, M., Demb, J. B., Mante, V., Tolhurst, D. J., Dan, Y., Olshausen, B. A., et al. (2005). Do we know what the early visual system does? Journal of Neurophysiology, 25(46), 10577–10597.Google Scholar
  7. Carandini, M., Horton, J. C., & Sincich, L. C. (2006). Postsynaptic mechanisms converting retinal spike trains into geniculate spike trains. Society for Neuroscience Abstracts, 32, 11.14.Google Scholar
  8. Casti, A. R., Omurtag, A., Sornborger, A., Kaplan, E., Knight, B., Victor, J., et al. (2002). A population study of integrate-and-fire-or-burst neurons. Neural Computation, 14(5), 957–986.PubMedCrossRefGoogle Scholar
  9. Casti, A. R. R., Kaplan, E., Lubliner, K., & Xiao, Y. (2005). Effects of cortical feedback on the lgn: Information transmission and dynamics. Society for Neuroscience Abstracts 31, 506.19.Google Scholar
  10. Chen, C., & Regehr, W. G. (2003). Presynaptic modulation of the retinogeniculate synapse. Journal of Neurophysiology, 23(8), 3130–3135.Google Scholar
  11. Cleland, B. G., Dubin, M. W., & Levick, W. R. (1971). Simultaneous recording of input and output of lateral geniculate neurones. Nature New Biology, 231(23), 191–192.PubMedGoogle Scholar
  12. Cleland, B. G., & Lee, B. B. (1985). A comparison of visual responses of cat lateral geniculate nucleus neurones with those of ganglion cells afferent to them. Journal of Physiology, 369, 249–268.PubMedGoogle Scholar
  13. Destexhe, A. (2000). Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. Journal of Physiology Paris, 94(5-6), 391–410.CrossRefGoogle Scholar
  14. Funke, K., Eysel, U. T., & FitzGibbon, T. (1991). Retinogeniculate transmission by NMDA and non-NMDA receptors in the cat. Brain Research, 547(2), 229–238.PubMedCrossRefGoogle Scholar
  15. Guido, W., Lu, S. M., & Sherman, S. M. (1992). Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat. Journal of Neurophysiology, 68(6), 2199–2211.PubMedGoogle Scholar
  16. Hochstein, S., & Shapley, R. M. (1976). Quantitative analysis of retinal ganglion cell classifications. Journal of Physiology, 262(2), 237–264.PubMedGoogle Scholar
  17. Hubel, D. H., & Wiesel, T. N. (1961). Integrative action in the cat’s lateral geniculate body. Journal of Physiology, 155, 385–398.PubMedGoogle Scholar
  18. Jolivet, R., Lewis, T. J., & Gerstner, W. (2004). Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Journal of Neurophysiology, 92(2), 959–976.PubMedCrossRefGoogle Scholar
  19. Jolivet, R., Rauch, A., Lüscher, H., & Gerstner, W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of Computational Neuroscience, 21(1), 35–49.PubMedCrossRefGoogle Scholar
  20. Kaplan, E., Purpura, K., & Shapley, R. M. (1987). Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. Journal of Physiology, 391, 267–288.PubMedGoogle Scholar
  21. Kaplan, E., & Shapley, R. (1984). The origin of the S (slow) potential in the mammalian lateral geniculate nucleus. Experimental Brain Research, 55(1), 111–116.CrossRefGoogle Scholar
  22. Keat, J., Reinagel, P., Reid, R. C., & Meister, M. (2001). Predicting every spike: A model for the responses of visual neurons. Neuron, 30(3), 803–817.PubMedCrossRefGoogle Scholar
  23. Kistler, W., Gerstner, W., & Hemmen, J. L. V. (1997). Reduction of the Hodgkin–Huxley equations to a single-variable threshold model. Neural Computation, 9, 1015–1045.Google Scholar
  24. Koch, C. (1985). Understanding the intrinsic circuitry of the cat’s lateral geniculate nucleus: electrical properties of the spine-triad arrangement. Proceedings of the Royal Society of London B, Biological Sciences, 225(1240), 365–390.Google Scholar
  25. Kwon, Y. H., Nelson, S. B., Toth, L. J., & Sur, M. (1992). Effect of stimulus contrast and size on NMDA receptor activity in cat lateral geniculate nucleus. Journal of Neurophysiology, 68(1), 182–196.PubMedGoogle Scholar
  26. Levine, M. W., & Cleland, B. G. (2001). An analysis of the effect of retinal ganglion cell impulses upon the firing probability of neurons in the dorsal lateral geniculate nucleus of the cat. Brain Research, 902(2), 244–254.PubMedCrossRefGoogle Scholar
  27. Liu, R. C., Tzonev, S., Rebrik, S., & Miller, K. D. (2001). Variability and information in a neural code of the cat lateral geniculate nucleus. Journal of Neurophysiology, 86(6), 2789–2806.PubMedGoogle Scholar
  28. Llinás, R., & Jahnsen, H. (1982). Electrophysiology of mammalian thalamic neurones in vitro. Nature, 297(5865), 406–408.PubMedCrossRefGoogle Scholar
  29. Mastronarde, D. N. (1987). Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. Journal of Neurophysiology, 57(2), 381–413.PubMedGoogle Scholar
  30. McCormick, D. A., & Huguenard, J. R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology, 68(4), 1384–1400.PubMedGoogle Scholar
  31. Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7, 308–313.Google Scholar
  32. Ozaki, T., & Kaplan, E. (2006). Brainstem input modulates globally the transmission through the lateral geniculate nucleus. International Journal of Neuroscience, 116(3), 247–264.PubMedCrossRefGoogle Scholar
  33. Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network, 15(4), 243–262.PubMedCrossRefGoogle Scholar
  34. Pillow, J. W., Paninski, L., Uzzell, V. J., Simoncelli, E. P., & Chichilnisky, E. J. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25(47), 11003–11013.PubMedCrossRefGoogle Scholar
  35. Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1992). Numerical Recipes: The Art of Scientific Computing (2nd ed.). Cambridge University Press.Google Scholar
  36. Reid, R. C., Victor, J. D., & Shapley, R. M. (1997). The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Visual Neuroscience, 14(6), 1015–1027.PubMedCrossRefGoogle Scholar
  37. Reinagel, P., & Reid, R. C. (2000). Temporal coding of visual information in the thalamus. Journal of Neuroscience, 20(14), 5392–5400.PubMedGoogle Scholar
  38. Shelley, M. J., & Tao, L. (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 11(2), 111–119.PubMedCrossRefGoogle Scholar
  39. Sherman, S. M. (2001). Tonic and burst firing: Dual modes of thalamocortical relay. Trends in Neurosciences, 24(2), 122–126.PubMedCrossRefGoogle Scholar
  40. Sherman, S. M. (2005). Thalamic relays and cortical functioning. Progress in Brain Research, 149, 107–126.PubMedCrossRefGoogle Scholar
  41. Sillito, A. M., Murphy, P. C., Salt, T. E., & Moody, C. I. (1990). Dependence of retinogeniculate transmission in cat on NMDA receptors. Journal of Neurophysiology, 63(2), 347–355.PubMedGoogle Scholar
  42. Sincich, L. C., Adams, D. L., Economides, J. R., & Horton, J. C. (2007). Transmission of spike trains at the retinogeniculate synapse. Journal of Neuroscience, 27(10), 2683–2692.PubMedCrossRefGoogle Scholar
  43. Sirovich, L. (2007). Populations of tightly coupled neurons: The RGC/LGN system. Neural Computation (accepted).Google Scholar
  44. Smith, G. D., Cox, C. L., Sherman, S. M., & Rinzel, J. (2000). Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. Journal of Neurophysiology, 83(1), 588–610.PubMedGoogle Scholar
  45. Sutter, E. E. (1987). A practical nonstochastic approach to nonlinear time-domain analysis. In V. Z. Marmarelis (Ed.), Advanced Methods of Physiological Systems Modeling (vol. 1). University of Southern California, Los Angeles.Google Scholar
  46. Troy, J. B., & Robson, J. G. (1992). Steady discharges of x and y retinal ganglion cells of cat under photopic illuminance. Visual Neuroscience, 9(6), 535–553.PubMedGoogle Scholar
  47. Usrey, W. M., Reppas, J. B., & Reid, R. C. (1998). Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature, 395(6700), 384–387.PubMedCrossRefGoogle Scholar
  48. van Hateren, J. H. (1997). Processing of natural time series of intensities by the visual system of the blowfly. Vision Research, 37(23), 3407–3416.PubMedCrossRefGoogle Scholar
  49. Victor, J. D., & Purpura, K. P. (1996). Nature and precision of temporal coding in visual cortex: A metric-space analysis. Journal of Neurophysiology, 76(2), 1310–1326.PubMedGoogle Scholar
  50. Weyand, T. G. (2007). Retinogeniculate transmission in wakefulness. Journal of Neurophysiology, 98(2), 769–785. Epub 2007 June 6.PubMedCrossRefGoogle Scholar
  51. Wörgötter, F., & Koch, C. (1991). A detailed model of the primary visual pathway in the cat: Comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity. Journal of Neuroscience, 11(7), 1959–1979.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Alexander Casti
    • 1
  • Fernand Hayot
    • 2
  • Youping Xiao
    • 1
  • Ehud Kaplan
    • 1
  1. 1.Fishburg Department of NeuroscienceMount Sinai School of MedicineNew YorkUSA
  2. 2.Department of NeurologyMount Sinai School of MedicineNew YorkUSA

Personalised recommendations