Advertisement

Journal of Computational Neuroscience

, Volume 24, Issue 2, pp 179–194 | Cite as

Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data

  • Paul MullowneyEmail author
  • Satish Iyengar
Article

Abstract

The Ornstein-Uhlenbeck process has been proposed as a model for the spontaneous activity of a neuron. In this model, the firing of the neuron corresponds to the first passage of the process to a constant boundary, or threshold. While the Laplace transform of the first-passage time distribution is available, the probability distribution function has not been obtained in any tractable form. We address the problem of estimating the parameters of the process when the only available data from a neuron are the interspike intervals, or the times between firings. In particular, we give an algorithm for computing maximum likelihood estimates and their corresponding confidence regions for the three identifiable (of the five model) parameters by numerically inverting the Laplace transform. A comparison of the two-parameter algorithm (where the time constant τ is known a priori) to the three-parameter algorithm shows that significantly more data is required in the latter case to achieve comparable parameter resolution as measured by 95% confidence intervals widths. The computational methods described here are a efficient alternative to other well known estimation techniques for leaky integrate-and-fire models. Moreover, it could serve as a template for performing parameter inference on more complex integrate-and-fire neuronal models.

Keywords

Ornstein–Uhlenbeck process Parameter inference Inverse Laplace transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., & Stegun, I. R. (1972). Handbook of mathematical functions (9th ed.). New York: Dover Publications Inc.Google Scholar
  2. Arnold, L. (1974). Stochastic differential equations: Theory and applications. New York: John Wiley and Sons.Google Scholar
  3. Bender, C. M., & Orzag, S. A. (1978). Advanced mathematical methods for scientists and engineers. New York: McGraw Hill.Google Scholar
  4. Broyden, C. G. (1965). A class of methods for solving nonlinear simultaneous equations. Mathematical Computing, 19, 577–593.CrossRefGoogle Scholar
  5. Burkitt, A. N., & Clark, G. M. (2000). Calculation of interspike intervals for integrate-and-fire neurons with poisson distribution of synaptic inputs. Neural Computation, 12, 1789–1820.PubMedCrossRefGoogle Scholar
  6. Burkitt, A. N. (2001). Balanced neurons: Analysis of leaky integrate-and-fire neurons with reversal potentials. Biological Cybernetics, 85, 247–255.CrossRefGoogle Scholar
  7. Burkitt, A. N. (2006a). A review of the integrate-and-fire neuron model: I. Homogenous synaptic input. Biological Cybernetics, 95, 1–19.PubMedCrossRefGoogle Scholar
  8. Burkitt, A. N. (2006b). A review of the integrate-and-fire neuron model: II. Inhomogenous synaptic input and network properties. Biological Cybernetics, 95, 97–112.PubMedCrossRefGoogle Scholar
  9. Capocelli, R. M., & Ricciardi, L. M. (1972). On the inverse of the first passage time probability problem. Journal of Applied Probability, 9, 270–287.CrossRefGoogle Scholar
  10. Churchill, R. V. (1981). Operational mathematics. New York: McGraw Hill.Google Scholar
  11. D’Amore, L., Laccetti, G., & Murli, A. (1999). An implementation of a fourier series method for the numerical inversion of the laplace transform. ACM Transactions on Mathematical Software, 25, 279–305.CrossRefGoogle Scholar
  12. Darling, D., & Siegert, A. (1953). The first passage problem for a continuous markov process. Annals of Mathematical Statistics, 24, 624–639.CrossRefGoogle Scholar
  13. De Hoog, F. R., Knight, J. H., & Stokes, A. N. (1982). An improved method for numerical inversion of laplace transforms. SIAM Journal of Scientific and Statistical Computing, 3, 357–366.CrossRefGoogle Scholar
  14. Ditlevsen, S., & Ditlevsen, O. (2006). Parameter estimation from observations of first-passage times of the Ornstein–Uhlenbeck process and the feller process. Presented at the fifth computational stochastic mechanics conference.Google Scholar
  15. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerves. Journal of Physiology, 117, 500–544.PubMedGoogle Scholar
  16. Inoue, J., Sato, S., & Ricciardi, L. (1995). On the parameter estimation for diffusion models of single neuron’s activities. Biological Cybernetics, 73, 209–221.PubMedCrossRefGoogle Scholar
  17. Jolivet, R., & Gerstner, W. (2004). Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival. Journal of Physiology (Paris), 98, 442–451.CrossRefGoogle Scholar
  18. Jolivet, R., Lewis, T. J., & Gerstner, W. (2004). Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Journal of Neurophysiology, 92, 959–976.PubMedCrossRefGoogle Scholar
  19. Jolivet, R., Rauch, A., Lüscher, H. R., & Gerstner, W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of Computational Neuroscience, 21, 35–49.PubMedCrossRefGoogle Scholar
  20. Kano, P. O., Moysey, B., & Moloney, J. V. (2005). Application of weeks method for the numerical inversion of the laplace transform of the matrix exponential. Computational Mathematical Sciences, 3, 335–372.Google Scholar
  21. Karlin, S., & Taylor, H. (1981). A second course in stochastic processes. New York: Academic Press.Google Scholar
  22. Keat, J., Reinagel, P., Reid, R. K., & Meister, M. (2001). Predicting every spike: A model for the responses of visual neurons. Neuron, 30, 803–817.PubMedCrossRefGoogle Scholar
  23. Lánský, P., Sacerdote, L., & Tomassetti, F. (1995). On the comparison of Feller and Ornstein–Uhlenbeck models for neural activity. Biological Cybernetics, 73, 457–465.PubMedCrossRefGoogle Scholar
  24. Lánský, P., Sanda, P., & He, J. (2006). The parameters of the stochastic leaky integrate-and-fire neuronal model. Journal of Computational Neuroscience, 21, 211–223.PubMedCrossRefGoogle Scholar
  25. Lebedev, N. N. (1972). Special functions and their applications. New York: Dover Publications.Google Scholar
  26. Lehmann, E. L. (1983). Theory of point estimation. New York: John Wiley and Sons.Google Scholar
  27. Miller, J. C. P. (1955). National Physical Laboratory, tables of Weber parabolic cylinder functions. London: Her Majesty’s Stationary Office.Google Scholar
  28. Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.PubMedGoogle Scholar
  29. Paninski, L., Pillow, J. W., & Simoncelli, E. P. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Computation, 16, 2533–2561.PubMedCrossRefGoogle Scholar
  30. Pillow, J. W., Paninski, L., Uzzel, V. J., Simoncelli, E. P., & Chichilnisky, E. J. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. The Journal of Neuroscience, 25(47), 11003–11013.PubMedCrossRefGoogle Scholar
  31. Plesser, H. E., & Tanaka, S. (1997). Stochastic resonance in a model neuron with reset. Physics Letters A, 225, 228–234.CrossRefGoogle Scholar
  32. Rabinovich, M. I., Varona, P., Selverston, A. I., & Abarbanel, H. D. I. (2006). Dynamical principles in neuroscience. Reviews of Modern Physics, 70, 1213–1265.CrossRefGoogle Scholar
  33. Ricciardi, L., & Sacerdote, L. (1977). The Ornstein–Uhlenbeck process as a model for neuronal activity. Biological Cybernetics, 35, 1–9.CrossRefGoogle Scholar
  34. Ricciardi, L., & Sato, S. (1988). First passage time density and moments of the Ornstein–Uhlenbeck process. Journal of Applied Probability, 25, 43–57.CrossRefGoogle Scholar
  35. Sharp, A. A., O’Neil, M. B., Abbott, L. F., & Marder, E. (1993a). The dynamic clamp: Artificial conductances in biological neurons. Trends in Neuroscience, 16, 389–394.CrossRefGoogle Scholar
  36. Sharp, A. A., O’Neil, M. B., Abbott, L. F., & Marder, E. (1993b). The dynamic clamp: Computer-generated conductances in real neurons. Journal of Neurophysiology, 69, 992–995.PubMedGoogle Scholar
  37. Shimokawa, T., Pakdaman, K., & Sato, S. (1999). Time-scale matching in the response of a leaky integrate-and-fire neuron model to periodic stimulus with additive noise. Physical Review E, 59, 3427–3443.CrossRefGoogle Scholar
  38. Siegert, A. J. F. (1951). On the first passage time probablity functioin. Physical Review, 81, 617–623.CrossRefGoogle Scholar
  39. Stein, R. B. (1965). A theoretical analysis of neuronal variability. Biophysical Journal, 5, 173–194.PubMedCrossRefGoogle Scholar
  40. Stephens, M. A. (1974). Edf statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 69, 730–737.CrossRefGoogle Scholar
  41. Tuckwell, H. (1988). Introduction to theoretical neurobiology. Volume 2: Nonlinear and stochastic theories. Cambridge: Cambridge University Press.Google Scholar
  42. Uhlenbeck, G., & Ornstein, L. (1954). On the theory of brownian motion (1930). In: N. Wax (Ed.), Selected papers in noise and stochastic processes. New York: Dover Publications.Google Scholar
  43. Weeks, W. T. (1966). Numerical inversion of the laplace transform using laguerre functions. Journal of Association of Computational Mathematics, 13, 419–429.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Tech-X CorporationBoulderUSA
  2. 2.Department of Mathematics and StatisticsUniversity of CanterburyChristchurchNew Zealand
  3. 3.Department of StatisticsUniversity of PittsburghPittsburghUSA

Personalised recommendations