Journal of Computational Neuroscience

, Volume 24, Issue 2, pp 137–156 | Cite as

A computational study of synaptic mechanisms of partial memory transfer in cerebellar vestibulo-ocular-reflex learning

Article

Abstract

There is a debate regarding whether motor memory is stored in the cerebellar cortex, or the cerebellar nuclei, or both. Memory may be acquired in the cortex and then be transferred to the cerebellar nuclei. Based on a dynamical system modeling with a minimal set of variables, we theoretically investigated possible mechanisms of memory transfer and consolidation in the context of vestibulo-ocular reflex learning. We tested different plasticity rules for synapses in the cerebellar nuclei and took robustness of behavior against parameter variation as the criterion of plausibility of a model variant. In the most plausible scenarios, mossy-fiber nucleus-neuron synapses or Purkinje-cell nucleus-neuron synapses are plastic on a slow time scale and store permanent memory, whose content is passed from the cerebellar cortex storing transient memory. In these scenarios, synaptic strengths are potentiated when the mossy-fiber afferents to the nuclei are active during a pause in Purkinje-cell activities. Furthermore, assuming that mossy fibers create a limited variety of signals compared to parallel fibers, our model shows partial memory transfer from the cortex to the nuclei.

Keywords

Cerebellum Motor learning Synaptic plasticity 

References

  1. Aizenman, C. D., & Linden, D. J. (1999). Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. Journal of Neurophysiology, 82, 1697–1709.PubMedGoogle Scholar
  2. Aizenman, C. D., & Linden, D. J. (2000). Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons. Nature Neuroscience, 3, 109–111.PubMedCrossRefGoogle Scholar
  3. Aizenman, C. D., Manis, P. B., & Linden, D. J. (1998). Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron, 21, 827–835.PubMedCrossRefGoogle Scholar
  4. Akemann, W., & Knöpfel, T. (2006). Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons. Journal of Neuroscience, 26, 4602–4612.PubMedCrossRefGoogle Scholar
  5. Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25–61.CrossRefGoogle Scholar
  6. Armstrong, D. M., & Rawson, J. A. (1979). Activity patterns of cerebellar cortical neurons and climbing fibre afferents in the awake cat. Journal of Physiology, 289, 425–448.PubMedGoogle Scholar
  7. Boyden, E. S., Katoh, A., & Raymond, J. L. (2004). Cerebellum-dependent learning: The role of multiple plasticity mechanisms. Annual Review of Neuroscience, 27, 581–609.PubMedCrossRefGoogle Scholar
  8. Coesmans, M., Weber, J. T., De Zeeuw, C. I., & Hansel, C. (2004). Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron, 44, 691–700.PubMedCrossRefGoogle Scholar
  9. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience—computational and mathematical modeling of neural systems. MIT.Google Scholar
  10. Davies, P., & Melvill Jones, G. (1976). An adaptive neural model compatible with plastic changes induced in the human vestibulo-ocular reflex by prolonged optical reversal of vision. Brain Research, 103, 546–550.PubMedCrossRefGoogle Scholar
  11. De Schutter, E., & Bjaalie, J. G. (2001). Coding in the granular layer of the cerebellum. Progress in Brain Research, 130, 279–296.PubMedCrossRefGoogle Scholar
  12. du Lac, S., Raymond, J. L., Sejnowski, T. J., & Lisberger, S. G. (1995). Learning and memory in the vestibulo-ocular reflex. Annual Review of Neuroscience, 18, 409–441.PubMedCrossRefGoogle Scholar
  13. Fujita, M. (1982). Adaptive filter model of the cerebellum. Biological Cybernetics, 45, 195–206.PubMedCrossRefGoogle Scholar
  14. Goldberg, J. M., & Fernandez, C. (1971). Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. Journal of Neurophysiology, 34, 635–660.PubMedGoogle Scholar
  15. Hansel, C., Linden, D. J., & D’Angelo, E. (2001). Beyond parallel fiber LTD: the diversity of synaptic and nonsynaptic plasticity in the cerebellum. Nature Neuroscience, 4, 467–475.PubMedGoogle Scholar
  16. Ito, M. (2001). Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiological Reviews, 81, 1143–1195.PubMedGoogle Scholar
  17. Ito, M., Jastreboff, P. J., & Miyashita, Y. (1982a). Specific effects of unilateral lesions in the flocculus upon eye movements in albino rabbits. Experimental Brain Research, 45, 233–242.CrossRefGoogle Scholar
  18. Ito, M., Sakurai, M., & Tongroach, P. (1982b). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. Journal of Physiology, 324, 113–134.Google Scholar
  19. Kassardjian, C. D., Yao-Fang, T., Chung, J. Y. J., Heskin, R., Peterson, M. J., & Broussard, D. M. (2005). The site of a motor memory shifts with consolidation. Journal Neuroscience, 25, 7979–7985.CrossRefGoogle Scholar
  20. Kleim, J. A., Freeman Jr., J. H., Bruneau, R., Nolan, B. C., Cooper, N. R., Zook, A. et al. (2002). Synapse formation is associated with memory storage in the cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 99, 13228–13231.PubMedCrossRefGoogle Scholar
  21. Kramer, P. D., Shelhamer, M., & Zee, D. S. (1995). Short-term adaptation of the phase of the vestibulo-ocular reflex (VOR) in normal human subjects. Experimental Brain Research, 106, 318–326.CrossRefGoogle Scholar
  22. LeDoux, M. S., Hurst, D. C., & Lorden, J. F. (1998). Single-unit activity of cerebellar nuclear cells in the awake genetically dystonic rat. Neuroscience, 86, 533–545.PubMedCrossRefGoogle Scholar
  23. Lisberger, S. G. (1988). The neural basis for learning of simple motor skills. Science, 242, 728–735.PubMedCrossRefGoogle Scholar
  24. Lisberger, S. F., & Sejnowski, T. J. (1992). Motor learning in a recurrent network model based on the vestibulo-ocular reflex. Nature, 360, 159–161.PubMedCrossRefGoogle Scholar
  25. Luebke, A. E., & Robinson, D. A. (1994). Gain changes of the cat's vestibulo-ocular reflex after flocculus deactivation. Experimental Brain Research, 98, 379–390.CrossRefGoogle Scholar
  26. Marr, D. (1969). A theory of cerebellar cortex. Journal of Physiology, 202, 437–470.PubMedGoogle Scholar
  27. Masuda, N., & Amari, S. (2006). Modeling memory transfer and savings in cerebellar motor learning. Advances in Neural Information Processing Systems, 18, 859–866 (Y. Weiss, B. Scholkopf, J. Platt Eds.).Google Scholar
  28. Mauk, M. D. (1997). Roles of cerebellar cortex and nuclei in motor learning: Contradictions or clues? Neuron, 18, 343–346.PubMedCrossRefGoogle Scholar
  29. Mauk, M. D., & Donegan, N. H. (1997). A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learning & Memory, 3, 130–158.CrossRefGoogle Scholar
  30. McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457.PubMedCrossRefGoogle Scholar
  31. Medina, J. F., Garcia, K. S., & Mauk, M. D. (2001). A mechanism for savings in the cerebellum. Journal of Neuroscience, 21, 4081–4089.PubMedGoogle Scholar
  32. Medina, J. F., Garcia, K. S., Nores, W. L., Taylor, N. M., & Mauk, M. D. (2000). Timing mechanisms in the cerebellum: Testing predictions of a large-scale computer simulation. Journal of Neuroscience, 20, 5516–5525.PubMedGoogle Scholar
  33. Medina, J. F., & Mauk, M. D. (1999). Simulations of cerebellar motor learning: Computational analysis of plasticity at the mossy fiber to deep nucleus synapse. Journal of Neuroscience, 19, 7140–7151.PubMedGoogle Scholar
  34. Medina, J. F., Repa, J. C., Mauk, M. D., & LeDoux, J. E. (2002). Parallels between cerebellum- and amygdala-dependent conditioning. Nature Review Neuroscience, 3, 122–131.CrossRefGoogle Scholar
  35. Miles, F. A., & Lisberger, S. G. (1981). Plasticity in the vestibulo-ocular reflex: A new hypothesis. Annual Review Neuroscience, 4, 273–299.CrossRefGoogle Scholar
  36. Miyachi, S., Hikosaka, O., & Lu, X. (2002). Differential activation of monkey striatal neurons in the early and late stages of procedural learning. Experimental Brain Research, 146, 122–126.CrossRefGoogle Scholar
  37. Miyachi, S., Hikosaka, O., Miyashita, K., Kárádi, Z., & Rand, M. K. (1997). Differential roles of monkey striatum in learning of sequential hand movement. Experimental Brain Research, 115, 1–5.CrossRefGoogle Scholar
  38. Morishita, W., & Sastry, B. R. (1996). Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. Journal of Neurophysiology, 76, 59–68.PubMedGoogle Scholar
  39. Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S. et al. (2002). Early consolidation in human primary motor cortex. Nature, 415, 640–644.PubMedCrossRefGoogle Scholar
  40. Nagao, S., Kitamura, T., Nakamura, N., Hiramatsu, T., & Yamada, J. (1997). Differences of the primate flocculus and ventral paraflocculus in the mossy and climbing fiber input organization. Journal of Comparative Neurology, 382, 480–498.PubMedCrossRefGoogle Scholar
  41. Nagao, S., & Kitazawa, H. (2003). Effects of reversible shutdown of the monkey flocculus on the retention of adaptation of the horizontal vestibulo-ocular reflex. Neuroscience, 118, 563–570.PubMedCrossRefGoogle Scholar
  42. Osanai, R., Nagao, S., Kitamura, T., Kawabata, I., & Yamada, J. (1999). Differences in mossy and climbing afferent sources between flocculus and ventral and dorsal paraflocculus in the rat. Experimental Brain Research, 124, 248–264.CrossRefGoogle Scholar
  43. Ouardouz, M., & Sastry, B. R. (2000). Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei. Journal of Neurophysiology, 84, 1414–1421.PubMedGoogle Scholar
  44. Palkovits, M., Mezey, É., Hámori, J., & Szentágothai, J. (1977). Quantitative histological analysis of the cerebellar nuclei in the cat. I. numerical data on cells and on synapses. Experimental Brain Research, 28, 189–209.CrossRefGoogle Scholar
  45. Pasupathy, A., & Miller, E. K. (2005). Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature, 433, 873–876.PubMedCrossRefGoogle Scholar
  46. Penhune, V. P., & Doyon, J. (2002). Dynamic cortical and subcortical networks in learning and delayed recall of timed motor sequences. Journal of Neuroscience, 22, 1397–1406.PubMedGoogle Scholar
  47. Penhune, V. B., & Doyon, J. (2005). Cerebellum and M1 interaction during early learning of timed motor sequences. Neuroimage, 26, 801–812.PubMedCrossRefGoogle Scholar
  48. Perrett, S. P., Luis, B. P., & Mauk, M. D. (1993). Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. Journal of Neuroscience, 13, 1708–1718.PubMedGoogle Scholar
  49. Perrett, S. P., & Mauk, M. D. (1995). Extinction of conditioned eyelid responses requires the anterior lobe of cerebellar cortex. Journal of Neuroscience, 15, 2074–2080.PubMedGoogle Scholar
  50. Peterson, B. W., Baker, J. F., & Houk, J. C. (1991). A model of adaptive control of vestibuloocular reflex based on properties of cross-axis adaptation. Annual New York Academy Science, 627, 319–337.CrossRefGoogle Scholar
  51. Pugh, J. R., & Raman, I. M. (2006). Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron, 51, 113–123.PubMedCrossRefGoogle Scholar
  52. Racine, R. J., Wilson, D. A., Gingell, R., & Sunderland, D. (1986). Long-term potentiation in the interpositus and vestibular nuclei in the rat. Experimental Brain Research, 63, 158–162.CrossRefGoogle Scholar
  53. Raymond, J. L., Lisberger, S. G., & Mauk, M. D. (1996). The cerebellum: A neuronal learning machine? Science, 272, 1126–1131.PubMedCrossRefGoogle Scholar
  54. Repa, J. C., Muller, J., Apergis, J., Desrochers, T. M., Zhou, Y., & LeDoux, J. E. (2001). Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nature Neuroscience, 4, 724–731.PubMedCrossRefGoogle Scholar
  55. Roland, N. C., & Jaeger, D. (2005). Coding of tactile response properties in the rat deep cerebellar nuclei. Journal of Neurophysiology, 94, 1236–1251.CrossRefGoogle Scholar
  56. Raymond, J. L., & Lisberger, S. G. (1998). Neural learning rules for the vestibulo-ocular reflex. Journal of Neuroscience, 18, 9112–9129.PubMedGoogle Scholar
  57. Sakurai, M. (1987). Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices. Journal of Physiology, 394, 463–480.PubMedGoogle Scholar
  58. Shutoh, F., Ohki, M., Kitazawa, H., Itohara, S., & Nagao, S. (2006). Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience, 139, 767–777.PubMedCrossRefGoogle Scholar
  59. Stickgold, R., Hobson, J. A., Fosse, R., & Fosse, M. (2001). Sleep, learning, and dreams: Off-line memory reprocessing. Science, 294, 1052–1057.PubMedCrossRefGoogle Scholar
  60. Sugihara, I., Ebata, S., & Shinoda, Y. (2004). Functional compartmentalization in the flocculus and the ventral dentate and dorsal group y nuclei: an analysis of single olivocerebellar axonal morphology. Journal of Compensation and Benefits, 470, 113.Google Scholar
  61. Thach, W. T. (1968). Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. Journal of Neurophysiology, 31, 785–797.PubMedGoogle Scholar
  62. Walker, M. P., Brakefield, T., Hobson, J. A., & Stickgold, R. (2003). Dissociable stages of human memory consolidation and reconsolidation. Nature, 425, 616–620.PubMedCrossRefGoogle Scholar
  63. Yamazaki, T., & Tanaka, S. (2005). Neural modeling of an internal clock. Neural Computation, 17, 1032–1058.PubMedCrossRefGoogle Scholar
  64. Zhang, W., & Linden, D. J. (2006). Long-term depression at the mossy fiber-deep cerebellar nucleus synapse. Journal of Neuroscience, 26, 6935–6944.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Amari Research Unit, RIKEN Brain Science InstituteWakoJapan

Personalised recommendations