Advertisement

Journal of Computational Neuroscience

, Volume 24, Issue 2, pp 113–136 | Cite as

Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron

  • Jan BendaEmail author
  • R. Matthias Hennig
Article

Abstract

Adaptation of the spike-frequency response to constant stimulation, as observed on various timescales in many neurons, reflects high-pass filter properties of a neuron’s transfer function. Adaptation in general, however, is not sufficient to make a neuron’s response independent of the mean intensity of a sensory stimulus, since low frequency components of the stimulus are still transmitted, although with reduced gain. We here show, based on an analytically tractable model, that the response of a neuron is intensity invariant, if the fully adapted steady-state spike-frequency response to constant stimuli is independent of stimulus intensity. Electrophysiological recordings from the AN1, a primary auditory interneuron of crickets, show that for intensities above 60 dB SPL (sound pressure level) the AN1 adapted with a time-constant of ~40 ms to a steady-state firing rate of ~100 Hz. Using identical random amplitude-modulation stimuli we verified that the AN1’s spike-frequency response is indeed invariant to the stimulus’ mean intensity above 60 dB SPL. The transfer function of the AN1 is a band pass, resulting from a high-pass filter (cutoff frequency at 4 Hz) due to adaptation and a low-pass filter (100 Hz) determined by the steady-state spike frequency. Thus, fast spike-frequency adaptation can generate intensity invariance already at the first level of neural processing.

Keywords

Spike-frequency adaptation Invariance Model Auditory system Cricket 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baccus, S. A., & Meister, M. (2002). Fast and slow contrast adaptation in retinal circuitry. Neuron, 36, 909–919.PubMedCrossRefGoogle Scholar
  2. Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. In W. Rosenblith (Ed.), Sensory communication (pp. 217–234). Cambridge, MA: MIT Press.Google Scholar
  3. Benda, J., & Herz, A. V. M. (2003). A universal model for spike-frequency adaptation. Neural Computation, 15, 2523–2564.PubMedCrossRefGoogle Scholar
  4. Benda, J., Longtin, A., & Maler, L. (2005). Spike-frequency adaptation separates transient communication signals from background oscillations. Journal of Neuroscience, 25, 2312–2321.PubMedCrossRefGoogle Scholar
  5. Brenner, N., Bialek, W., & de Ruyter van Steveninck, R. (2000). Adaptive rescaling maximizes information transfer. Neuron, 26, 695–702.PubMedCrossRefGoogle Scholar
  6. Cartling, B. (1996). A low-dimensional, time resolved and adapting model neuron. International Journal of Neural Systems, 7, 237–246.PubMedCrossRefGoogle Scholar
  7. Dean, I., Harper, N. S., & McAlpine, D. (2005). Neural population coding of sound level adapts to stimulus statistics. Nature Neuroscience, 8, 1684–1689.PubMedCrossRefGoogle Scholar
  8. Doolan, J. M., & Pollack, G. S. (1985). Phonotactic specifity of the cricket Teleogryllus oceanicus: Intensity-dependent selectivity for temporal parameters of the stimulus. Journal of Comparative Physiology, A, 157, 223–233.CrossRefGoogle Scholar
  9. Esch, H., Huber, F., & Wohlers, D. W. (1980). Primary auditory neurons in crickets: Physiology and central projections. Journal of Comparative Physiology, A, 137, 27–38.CrossRefGoogle Scholar
  10. Fairhall, A. L., Lewen, G. D., Bialek, W., & de Ruyter van Steveninck, R. R. (2001). Efficiency and ambiguity in an adaptive neural code. Nature, 412, 787–792.PubMedCrossRefGoogle Scholar
  11. Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. Journal of Neuroscience, 23, 11628–11640.PubMedGoogle Scholar
  12. French, A. S., Höger, U., Sekizawa, S. I., & Torkkeli, P. H. (2001). Frequency response functions and information capacities of paired spider mechanoreceptor neurons. Biological Cybernetics, 85, 293–300.PubMedCrossRefGoogle Scholar
  13. French, A. S., & Torkkeli, P. H. (1994). The time course of sensory adaptation in the cockroach tactile spine. Neuroscience Letters, 178, 147–150.PubMedCrossRefGoogle Scholar
  14. Fuhrmann, G., Markram, H., & Tsodyks, M. (2002). Spike frequency adaptation and neocortical rhythms. Journal of Neurophysiology, 88, 761–770.PubMedGoogle Scholar
  15. Gabbiani, F., & Krapp, H. G. (2006). Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. Journal of Neurophysiology, 96, 2951–2962.PubMedCrossRefGoogle Scholar
  16. Gabbiani, F., Krapp, H. G., Hatsopoulos, N., Mo, C. H., Koch, C., & Laurent, G. (2004). Multiplication and stimulus invariance in a looming-sensitive neuron. Journal of physiology Paris, 98, 19–34.CrossRefGoogle Scholar
  17. Hennig, R. M. (1988). Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): Comparative physiology and direct connections with afferents. Journal of Comparative Physiology, A, 163, 135–143.CrossRefGoogle Scholar
  18. Hennig, R. M. (2003). Acoustic feature extraction by cross-correlation in crickets? Journal of Comparative Physiology, A, 189, 589–598.CrossRefGoogle Scholar
  19. Hennig, R. M., & Weber, T. (1997). Filtering of temporal parameters of the calling song by cricket females of two closely related species: A behavioural analysis. Journal of Comparative Physiology A, 180, 621–630.CrossRefGoogle Scholar
  20. Horseman, G., & Huber, F. (1994a). Sound localisation in crickets I: Contralateral inhibition of an ascending auditory interneuron (AN1) in the cricket Gryllus bimaculatus. Journal of Comparative Physiology, A, 175, 389–398.Google Scholar
  21. Horseman, G., & Huber, F. (1994b). Sound localisation in crickets II: Modelling the role of a simple neural network in the prothoracic ganglion. Journal of Comparative Physiology, A, 175, 399–413.CrossRefGoogle Scholar
  22. Huber, F., Moore, T. E., & Loher, W. (1989). Cricket behavior and neurobiology. Ithaca, NY: Cornell University Press.Google Scholar
  23. Kim, K. J., & Rieke, F. (2003). Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells. Journal of Neuroscience, 23, 1506–1516.PubMedGoogle Scholar
  24. Knight, B. W. (1972). Dynamics of encoding in a population of neurons. Journal of General Physiology, 59, 734–766.PubMedCrossRefGoogle Scholar
  25. Kvale, M. N., & Schreiner, C. E. (2004). Short-term adaptation of auditory receptive fields to dynamic stimuli. Journal of Neurophysiology, 91, 604–612.PubMedCrossRefGoogle Scholar
  26. Laughlin, S. B. (1989). The role of sensory adaptation in the retina. Journal of Experimental Biology, 146, 39–62.PubMedGoogle Scholar
  27. Maravall, M., Petersen, R. S., Fairhall, A. L., Arabzadeh, E., & Diamond, M. E. (2007). Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLoS Biology, 5(2), e19.PubMedCrossRefGoogle Scholar
  28. Marsat, G., & Pollack, G. S. (2005). Effect of the temporal pattern of contralateral inhibition on sound localization cues. Journal of Neuroscience, 25, 6137–6144.PubMedCrossRefGoogle Scholar
  29. Nelken, I., Fishbach, A., Las, L., Ulanovsky, N., & Farkas, D. (2003). Primary auditory cortex of cats: Feature detection or something else? Biological Cybernetics, 89, 397–406.PubMedCrossRefGoogle Scholar
  30. Nelson, M. E., Xu, Z., & Payne, J. R. (1997). Characterization and modeling of P-type electrosensory afferent responses to amplitude modulations in a wave-type electric fish. Journal of Comparative Physiology, A, 181, 532–544.CrossRefGoogle Scholar
  31. Park, T. J., Klug, A., Holinstat, M., & Grothe, B. (2004). Interaural level difference processing in the lateral superior olive and the inferior colliculus. Journal of Neurophysiology, 92, 289–301.PubMedCrossRefGoogle Scholar
  32. Pollack, G. S. (1988). Selective attentiion in an insect auditory neuron. Journal of Neuroscience, 8, 2635–2639.PubMedGoogle Scholar
  33. Pollack, G. S., & El-Feghaly, E. (1993). Calling song recognition in the cricket Teleogryllus oceanicus: Comparison of the effects of stimulus intensity and sound spectrum on selectivity for temporal patterns. Journal of Comparative Physiology, A, 171, 759–765.CrossRefGoogle Scholar
  34. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in C (2nd edn.). Cambridge: Cambridge University Press.Google Scholar
  35. Reinagel, P. (2001). Neurobiology: The many faces of adaptation. Nature, 412, 776–777.PubMedCrossRefGoogle Scholar
  36. Römer, H., & Krusch, M. (2000). A gain-control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricket Tettigonia viridissima (Orthoptera; Tettigoniidae). Journal of Comparative Physiology, A, 186, 181–191.CrossRefGoogle Scholar
  37. Sanchez-Vives, M. V., Nowak, L. G., & McCormick, D. A. (2000). Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. Journal of Neuroscience, 20, 4267–4285.PubMedGoogle Scholar
  38. Schildberger, K. (1984). Temporal selectivity of identified auditory neurons in the cricket brain. Journal of Comparative Physiology A, 155, 171–185.CrossRefGoogle Scholar
  39. Schildberger, K., & Hörner, M. (1988). The function of auditory neurons in cricket phonotaxis. Journal of Comparative Physiology, A, 163, 621–631.CrossRefGoogle Scholar
  40. Smirnakis, S. M., Berry, M. J., Warland, D. K., Bialek, W., & Meister, M. (1997). Adaptation of retinal processing to image contrast and spatial scale. Nature, 386, 69–73.PubMedCrossRefGoogle Scholar
  41. Sobel, E. C., & Tank, D. W. (1994). In vivo Ca2+ dynamics in a cricket auditory neuron: An example of chemical computation. Science, 263, 823–826.PubMedCrossRefGoogle Scholar
  42. Solomon, S. G., Peirce, J. W., Dhruv, N. T., & Lennie, P. (2004). Profound contrast adaptation early in the visual pathway. Neuron, 42, 155–162.PubMedCrossRefGoogle Scholar
  43. Ulanovsky, N., Las, L., Farkas, D., & Nelken, I. (2004). Multiple time scales of adaptation in auditory cortex neurons. Journal of Neuroscience, 24, 10440–10453.PubMedCrossRefGoogle Scholar
  44. Wang, X. J. (1998). Calcium coding and adaptive temporal computation in cortical pyramidal neurons. Journal of Neurophysiology, 79, 1549–1566.PubMedGoogle Scholar
  45. Weber, T., Thorson, J., & Huber, F. (1981). Auditory behaviour of the cricket I dynamics of compensated walking and discrimination paradigms on the kramer treadmill. Journal of Comparative Physiology A, 141, 215–232.CrossRefGoogle Scholar
  46. Wiskott, L. (2003). Slow feature analysis: A theoretical analysis of optimal free responses. Neural Computation, 15, 2147–2177.PubMedCrossRefGoogle Scholar
  47. Wohlers, D. W., & Huber, F. (1982). Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestrisL. Journal of Comparative Physiology A, 146, 161–173.CrossRefGoogle Scholar
  48. Xu, Z., Payne, J. R., & Nelson, M. E. (1996). Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish. Journal of Neurophysiology, 76, 2020–2032.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute for Theoretical Biology, Biology DepartmentHumboldt UniversityBerlinGermany
  2. 2.Behavioral Physiology, Biology DepartmentHumboldt UniversityBerlinGermany

Personalised recommendations