Journal of Computational Neuroscience

, Volume 23, Issue 3, pp 349–398 | Cite as

Simulation of networks of spiking neurons: A review of tools and strategies

  • Romain Brette
  • Michelle Rudolph
  • Ted Carnevale
  • Michael Hines
  • David Beeman
  • James M. Bower
  • Markus Diesmann
  • Abigail Morrison
  • Philip H. Goodman
  • Frederick C. HarrisJr.
  • Milind Zirpe
  • Thomas Natschläger
  • Dejan Pecevski
  • Bard Ermentrout
  • Mikael Djurfeldt
  • Anders Lansner
  • Olivier Rochel
  • Thierry Vieville
  • Eilif Muller
  • Andrew P. Davison
  • Sami El Boustani
  • Alain Destexhe
Topical Review on Techniques

Abstract

We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin–Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.

Keywords

Spiking neural networks Simulation tools Integration strategies Clock-driven Event-driven 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, L. F., & Nelson, S. B. (2000). Synaptic plasticity: taming the beast. Nature Neuroscience, 3(Suppl), 1178–1283.PubMedGoogle Scholar
  2. Arnold, L. (1974). Stochastic differential equations: Theory and applications. New York: J. Wiley and Sons.Google Scholar
  3. Azouz, R. (2005). Dynamic spatiotemporal synaptic integration in cortical neurons: neuronal gain, revisited. Journal of Neurophysiology, 94, 2785–2796.PubMedGoogle Scholar
  4. Badoual, M., Rudolph, M., Piwkowska, Z., Destexhe, A., & Bal, T. (2005). High discharge variability in neurons driven by current noise. Neurocomputing, 65, 493–498.Google Scholar
  5. Bailey, J., & Hammerstrom, D. (1988). Why VLSI implementations of associative VLCNs require connection multiplexing. International Conference on Neural Networks (ICNN 88, IEEE) (pp. 173–180). San Diego.Google Scholar
  6. Banitt, Y., Martin, K. A. C., & Segev, I. (2005). Depressed responses of facilitatory synapses. Journal of Neurophysiology, 94, 865–870.PubMedGoogle Scholar
  7. Beeman, D. (2005). GENESIS Modeling Tutorial. Brains, Minds, and Media. 1: bmm220 (urn:nbn:de:0009-3-2206).Google Scholar
  8. Bernard, C., Ge, Y. C., Stockley, E., Willis, J. B., & Wheal, H. V. (1994). Synaptic integration of NMDA and non-NMDA receptors in large neuronal network models solved by means of differential equations. Biological Cybernetics, 70(3), 267–73.PubMedGoogle Scholar
  9. Bhalla, U., Bilitch, D., & Bower, J. M. (1992). Rallpacks: A set of benchmarks for neuronal simulators. Trends in Neurosciences, 15, 453–458.PubMedGoogle Scholar
  10. Bhalla, U. S., & Iyengar, R. (1999). Emergent properties of networks of biological signaling pathways. Science, 283, 381–387.PubMedGoogle Scholar
  11. Bhalla, U. S. (2004). Signaling in small subcellular volumes: II. Stochastic and diffusion effects on synaptic network properties. Biophysical Journal, 87, 745–753.PubMedGoogle Scholar
  12. Blake, J. L., & Goodman, P. H. (2002). Speech perception simulated in a biologically-realistic model of auditory neocortex (abstract). Journal of Investigative Medicine, 50, 193S.Google Scholar
  13. Bower, J. M. (1995). Reverse engineering the nervous system: An in vivo, in vitro, and in computo approach to understanding the mammalian olfactory system. In: S. F. Zornetzer, J. L. Davis, & C. Lau (Eds.), An introduction to neural and electronic networks, second edn (pp. 3–28). New York: Academic Press.Google Scholar
  14. Bower, J. M., & Beeman, D. (1998). The book of GENESIS: Exploring realistic neural models with the General Neural Simulation System, second edn. New York: Springer.Google Scholar
  15. Brette, R. (2006). Exact simulation of integrate-and-fire models with synaptic conductances. Neural Computation, 18, 2004–2027.PubMedGoogle Scholar
  16. Brette, R. (2007). Exact simulation of integrate-and-fire models with exponential currents. Neural Computation (in press).Google Scholar
  17. Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiolgy, 94, 3637–3642.Google Scholar
  18. Brown, R. (1988). Calendar queues: A fast 0(1) priority queue implementation for the simulation event set problem. Journal of Communication ACM, 31(10), 1220–1227.Google Scholar
  19. Carnevale, N. T., & Hines, M. L. (2006). The NEURON book. Cambridge: Cambridge University Press.Google Scholar
  20. Carriero, N., & Gelernter, D. (1989). Linda in context. Communications of the ACM, 32, 444–458.Google Scholar
  21. Claverol, E., Brown, A., & Chad, J. (2002). Discrete simulation of large aggregates of neurons. Neurocomputing, 47, 277–297.Google Scholar
  22. Connollly, C., Marian, I., & Reilly, R. (2003). Approaches to efficient simulation with spiking neural networks. In WSPC.Google Scholar
  23. Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2001). Introduction to algorithms, second edn. Cambridge: MIT Press.Google Scholar
  24. Crook, S., Beeman, D., Gleeson, P., & Howell, F. (2005). XML for model specification in neuroscience. Brains, Minds and Media 1: bmm228 (urn:nbn:de:0009-3-2282).Google Scholar
  25. Daley, D., & Vere-Jones, D. (1988). An introduction to the theory of point processes. New York: Springer.Google Scholar
  26. Day, M., Carr, D. B., Ulrich, S., Ilijic, E., Tkatch, T., & Surmeier, D. J. (2005). Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2, and k(leak) channels. Journal of Neuroscience, 25, 8776–8787.PubMedGoogle Scholar
  27. Delorme, A., & Thorpe, S. J. (2003). Spikenet: An event-driven simulation package for modelling large networks of spiking neurons. Network, 14(4), 613–627.PubMedCrossRefGoogle Scholar
  28. De Schutter, E., & Bower, J. M. (1994). An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. Journal of Neurophysiology, 71, 375–400.PubMedGoogle Scholar
  29. Destexhe, A., Mainen, Z., & Sejnowski, T. (1994a). An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Computation, 6, 14–18.Google Scholar
  30. Destexhe, A., Mainen, Z., & Sejnowski, T. (1994b). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1, 195–230.Google Scholar
  31. Destexhe, A., & Sejnowski, T. J. (2001). Thalamocortical assemblies. New York: Oxford University Press.Google Scholar
  32. Diesmann, M., & Gewaltig, M.-O. (2002). NEST: An environment for neural systems simulations. In T. Plesser & V. Macho (Eds.), Forschung und wisschenschaftliches Rechnen, Beitrage zum Heinz-Billing-Preis 2001, Volume 58 of GWDG-Bericht, (pp. 43–70). Gottingen: Ges. fur Wiss. Datenverarbeitung.Google Scholar
  33. Djurfeldt, M., Johansson, C., Ekeberg, Ö., Rehn, M., Lundqvist, M., & Lansner, A. (2005). Massively parallel simulation of brain-scale neuronal network models. Technical Report TRITA-NA-P0513. Stockholm: School of Computer Science and Communication.Google Scholar
  34. Drewes, R., Maciokas, J. B., Louis, S. J., & Goodman, P. H. (2004). An evolutionary autonomous agent with visual cortex and recurrent spiking columnar neural network. Lecture Notes in Computer Science, 3102, 257–258.CrossRefGoogle Scholar
  35. Drewes, R. (2005). Modeling the brain with NCS and Brainlab. LINUX Journal online. http://www.linuxjournal.com/article/8038.
  36. Ermentrout, B. (2004). Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. Philadelphia: SIAM.Google Scholar
  37. Ermentrout, B., & Kopell, N. (1986). Parabolic bursting in an excitable system coupled with a slow oscillation. Siam Journal on Applied Mathematics, 46, 233–253.Google Scholar
  38. Ferscha, A. (1996). Parallel and distributed simulation of discrete event systems. In A. Y. Zomaya (Ed.), Parallel and Distributed Computing Handbook (pp. 1003–1041). New York: McGraw-Hill.Google Scholar
  39. Fransén, E., & Lansner, A. (1998). A model of cortical associative memory based on a horizontal network of connected columns. Network: Computation in Neural Systems, 9, 235–264.Google Scholar
  40. Froemke, R. C., & Dan, Y. (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature, 416, 433–438.PubMedGoogle Scholar
  41. Fujimoto, R. M. (2000). Parallel and distributed simulation systems. New York: Wiley.Google Scholar
  42. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., et al. (2001). Gnu scientific library: Reference manual. Bristol: Network Theory Limited.Google Scholar
  43. Gara, A., Blumrich, M. A., Chen, D., Chiu, G. L.-T., Coteus, P., Giampapa, M. E., et al. (2005). Overview of the Blue Gene/L system architecture. IBM Journal of Reasearch and Development, 49, 195–212.Google Scholar
  44. Gerstner, W., & Kistler, W. M. (2002). Mathematical formulations of hebbian learning. Biological Cybernetics, 87, 404–415.PubMedGoogle Scholar
  45. Giugliano, M. (2000). Synthesis of generalized algorithms for the fast computation of synaptic conductances with markov kinetic models in large network simulations. Neural Computation, 12, 903–931.PubMedGoogle Scholar
  46. Giugliano, M., Bove, M., & Grattarola, M. (1999). Fast calculation of short-term depressing synaptic conductances. Neural Computation, 11, 1413–1426.PubMedGoogle Scholar
  47. Goddard, N., Hucka, M., Howell, F., Cornelis, H., Shankar, K., & Beeman, D. (2001). Towards NeuroML: Model description methods for collaborative modelling in neuroscience. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356, 1209–1228.PubMedGoogle Scholar
  48. Grill, W. M., Simmons, A. M., Cooper, S. E., Miocinovic, S., Montgomery, E. B., Baker, K. B., et al. (2005). Temporal excitation properties of parenthesias evoked by thalamic microstimulation. Clinical Neurophysiology, 116, 1227–1234.PubMedGoogle Scholar
  49. Gupta, A., Wang, Y., & Markram, H. (2000). Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science, 287, 273–278.PubMedGoogle Scholar
  50. Gütig, R., Aharonov, R., Rotter, S., & Sompolinsky, H. (2003). Learning input correlations through non-linear asymmetric hebbian plasticity. Journal of Neuroscience, 23, 3697–3714.PubMedGoogle Scholar
  51. Gütig, R., & Sompolinsky, H. (2006). The tempotron: A neuron that learns spike timing-based decisions. Nature Neuroscience, 9, 420–428.PubMedGoogle Scholar
  52. Hammarlund, P., & Ekeberg, Ö. (1998). Large neural network simulations on multiple hardware platforms. Journal of Computational Neuroscience, 5, 443–459.PubMedGoogle Scholar
  53. Hansel, D., Mato, G., Meunier, C., & Neltner, L. (1998). On numerical simulations of integrate-and-fire neural networks. Neural Computation, 10, 467–483.PubMedGoogle Scholar
  54. Hereld, M., Stevens, R. L., Teller, J., & van Drongelen, W. (2005). Large neural simulations on large parallel computers. International Journal of Bioelectromagnetism, 7, 44–46.Google Scholar
  55. Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E., et al. (2005). SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software, 31, 363–396.Google Scholar
  56. Hines, M. (1984). Efficient computation of branched nerve equations. International Journal of Bio-Medical Computing, 15, 69–76.PubMedGoogle Scholar
  57. Hines, M. (1989). A program for simulation of nerve equations with branching geometries. International Journal of Bio-Medical Computing, 24, 55–68.PubMedGoogle Scholar
  58. Hines, M., & Carnevale, N. T. (1997). The neuron simulation environment. Neural Computation, 9, 1179–1209.PubMedGoogle Scholar
  59. Hines, M. L., & Carnevale, N. T. (2000). Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Computation, 12, 995–1007.PubMedGoogle Scholar
  60. Hines, M. L., & Carnevale, N. T. (2001). NEURON: A tool for neuroscientists. The Neuroscientist, 7, 123–135.PubMedGoogle Scholar
  61. Hines, M. L., & Carnevale, N. T. (2004). Discrete event simulation in the NEURON environment. Neurocomputing, 58–60, 1117–1122.Google Scholar
  62. Hirsch, M., & Smale, S. (1974). Differential equations, dynamical systems, and linear algebra. Pure and applied mathematics. New York: Academic Press.Google Scholar
  63. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.PubMedGoogle Scholar
  64. Honeycutt, R. L. (1992). Stochastic Runge–Kutta algorithms. I. White noise. Physical Review A, 45, 600–603.PubMedGoogle Scholar
  65. Houweling, A. R., Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2005). Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cerebral Cortex, 15, 834–845.PubMedGoogle Scholar
  66. Hugues, E., Guilleux, F., & Rochel, O. (2002). Contour detection by synchronization of integrate-and-fire neurons. Proceedings of the 2nd workshop on biologically motivated computer vision—BMCV 2002, TÃbingen, Germany. Lecture Notes in Computer Science, 2525, 60–69.Google Scholar
  67. Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569–1572.PubMedGoogle Scholar
  68. Jahnke, A., Roth, U., & Schoenauer, T. (1998). Digital simulation of spiking neural networks. In W. Maass & C. M. Bishop (Eds.), Pulsed neural networks. Cambridge: MIT Press.Google Scholar
  69. Johnston, D., & Wu, S. M.-S. (1995). Foundations of Cellular Neurophysiology. Cambridge: MIT Press.Google Scholar
  70. Kanold, P. O., & Manis, P. B. (2005). Encoding the timing of inhibitory inputs. Journal of Neurophysiology, 93, 2887–2897.PubMedGoogle Scholar
  71. Kellogg, M. M., Wills, H. R., & Goodman, P. H. (1999). Cumulative synaptic loss in aging and Alzheimer’s dementia: A biologically realistic computer model (abstract). Journal of Investigative Medicine, 47(17S).Google Scholar
  72. Kernighan, B. W., & Pike, R. (1984). Appendix 2: Hoc manual. In The UNIX programming environment (pp. 329–333). Englewood Cliffs: Prentice-Hall.Google Scholar
  73. Kohn, J., & Wörgötter, F. (1998). Employing the Z-transform to optimize the calculation of the synaptic conductance of NMDA and other synaptic channels in network simulations. Neural Computation, 10, 1639–1651.PubMedGoogle Scholar
  74. Kozlov, A., Lansner, A., & Grillner, S. (2003). Burst dynamics under mixed nmda and ampa drive in the models of the lamprey spinal cpg. Neurocomputing, 52–54, 65–71.Google Scholar
  75. Kozlov, A., Lansner, A., Grillner, S., & Kotaleski, J. H. (2007). A hemicord locomotor network of excitatory interneurons: A simulation study. Biological Cybernetics, 96, 229–243.PubMedGoogle Scholar
  76. Laing, C. R. (2006). On the application of “equation-free” modelling to neural systems. Journal of Computational Neuroscience, 20, 5–23.PubMedGoogle Scholar
  77. Lee, G., & Farhat, N. H. (2001). The double queue method: A numerical method for integrate-and-fire neuron networks. Neural Networks, 14, 921–932.PubMedGoogle Scholar
  78. Lundqvist, M., Rehn, M., Djurfeldt, M., & Lansner, A. (2006). Attractor dynamics in a modular network model of neocortex. Network: Computation in Neural Systems, 17, 253–276.Google Scholar
  79. Lytton, W. W. (1996). Optimizing synaptic conductance calculation for network simulations. Neural Computation, 8, 501–509.PubMedGoogle Scholar
  80. Lytton, W. W. (2002). From computer to brain. New York: Springer-Verlag.Google Scholar
  81. Lytton, W. W., & Hines, M. L. (2005). Independent variable time-step integration of individual neurons for network simulations. Neural Computation, 17, 903–921.PubMedGoogle Scholar
  82. Maass, W., Natschlager, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14, 2531–2560.Google Scholar
  83. Macera-Rios, J. C., Goodman, P. H., Drewes, R, & Harris, F. C. Jr (2004). Remote-neocortex control of robotic search and threat identification. Robotics and Autonomous Systems, 46, 97–110.Google Scholar
  84. Maciokas, J. B., Goodman, P. H., Kenyon, J. L., Toledo-Rodriquez, M., & Markram, H. (2005). Accurate dynamical model of interneuronal GABAergic channel physiologies. Neurocomputing, 65, 5–14.Google Scholar
  85. Makino, T. (2003). A discrete-event neural network simulator for general neuron models. Neural Computing and Applications, 11, 210–223.Google Scholar
  86. Marian, I., Reilly, R., & Mackey, D. (2002). Efficient event-driven simulation of spiking neural networks. In Proceedings of the 3rd WSEAS International Conference on Neural Networks and Applications.Google Scholar
  87. Markram, H., Lubke, J., Frotscher, M., Roth, A., & Sakmann, B. (1997a). Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. Journal of Physiology, 500, 409–440.Google Scholar
  88. Markram, H., Lubke, J., Frotscher, M., & Sakmann, B. (1997b). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–215.Google Scholar
  89. Markram, H., Dimitri, P., Gupta, A., & Tsodyks, M. (1998a). Potential for multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses. Neuropharmacology, 37, 489–500.PubMedGoogle Scholar
  90. Markram, H., Wang, Y., & Tsodyks, M. (1998b). Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences of the United Stated of America, 95, 5323–5328.Google Scholar
  91. Mattia, M., & Del Giudice, P. (2000). Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Computation, 12, 2305–2329.PubMedGoogle Scholar
  92. Markaki, M., Orphanoudakis, S., & Poirazi, P. (2005). Modelling reduced excitability in aged CA1 neurons as a calcium-dependent process. Neurocomputing, 65, 305–314.Google Scholar
  93. Mayrhofer, R., Affenzeller, M., Prähofer, H., Hfer, G., & Fried, A. (2002). Devs simulation of spiking neural networks. In Proceedings of Cybernetics and Systems (EMCSR), (Vol. 2, pp. 573–578). Austrian Society for Cybernetic Studies.Google Scholar
  94. Migliore, M., Hines, M. L., & Shepherd, G. M. (2005). The role of distal dendritic gap junctions in synchronization of mitral cell axonal output. Journal of Computational Neuroscience, 18, 151–161.PubMedGoogle Scholar
  95. Migliore, M., Cannia, C., Lytton, W. W., Markram, H., & Hines, M. L. (2006). Parallel network simulations with NEURON. Journal of Computational Neuroscience, 21, 119–129.PubMedGoogle Scholar
  96. Moffitt, M. A., & McIntyre, C. C. (2005). Model-based analysis of cortical recording with silicon microelectrodes. Clinical Neurophysiology, 116, 2240–2250.PubMedGoogle Scholar
  97. Moore, J. W., & Stuart, A. E. (2000). Neurons in action: computer simulations with NeuroLab. Sunderland: Sinauer Associates.Google Scholar
  98. Morrison, A., Aertsen, A., & Diesmann, M. (2007b). Spike-timing plasticity in balanced random networks. Neural Computation, 19, 47–49.Google Scholar
  99. Morrison, A., Mehring, C., Geisel, T., Aertsen, A., & Diesmann, M. (2005). Advancing the boundaries of high connectivity network simulation with distributed computing. Neural Computation, 17, 1776–1801.PubMedGoogle Scholar
  100. Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2007a). Exact subthreshold integration with continuous spike times in discrete time neural network simulations. Neural Computation, 19, 1437–1467.Google Scholar
  101. Natschläger, T., Markram, H., & Maass, W. (2003). Computer models and analysis tools for neural microcircuits. In R. Kötter (Ed.), Neuroscience databases. A practical guide (pp. 123–138). Boston: Kluwer Academic Publishers.Google Scholar
  102. Nenadic, Z., Ghosh, B. K., & Ulinski, P. (2003). Propagating waves in visual cortex: A large scale model of turtle visual cortex. Journal of Computational Neuroscience, 14, 161–184.PubMedGoogle Scholar
  103. Olshausen, B. A., & Field, D. J. (2005). How close are we to understanding V1? Neural Computation, 17, 1665–1699.PubMedGoogle Scholar
  104. Opitz, B. A., & Goodman, P. H. (2005). In silico knockin/knockout in model neocortex suggests role of Ca-dependent K+ channels in spike-timing information (abstract). Journal of Investigative Medicine, 53, 193S.Google Scholar
  105. Prescott, S. A., & De Koninck, Y. (2005). Integration time in a subset of spinal lamina I neurons is lengthened by sodium and calcium currents acting synergistically to prolong subthreshold depolarization. Journal of Neuroscience, 25, 4743–4754.PubMedGoogle Scholar
  106. Press, W. H., Flannery B. P., Teukolsky S. A., & Vetterling W. T. (1993). Numerical recipes in C: The art of scientific computing. Cambridge: Cambridge University Press.Google Scholar
  107. Reutimann, J., Giugliano, M., & Fusi, S. (2003). Event-driven simulation of spiking neurons with stochastic dynamics. Neural Computation, 15, 811–830.PubMedGoogle Scholar
  108. Ripplinger, M. C., Wilson, C. J., King, J. G., Frye, J., Drewes, R., Harris, F. C., et al. (2004). Computational model of interacting brain networks (abstract). Journal of Investigative Medicine, 52, 155S.Google Scholar
  109. Rochel, O., & Martinez, D. (2003). An event-driven framework for the simulation of networks of spiking neurons. In Proceedings of the 11th European Symposium on Artificial Neural Networks — ESANN’2003 (pp. 295–300). Bruges.Google Scholar
  110. Rochel, O., & Vieville, T. (2006). One step towards an abstract view of computation in spiking neural networks (abstract). 10th International Conference on Cognitive and Neural Systems. Boston.Google Scholar
  111. Rochel, O., & Cohen, N. (2007). Real time computation: Zooming in on population codes. Biosystems, 87, 260–266.PubMedGoogle Scholar
  112. Rotter, S., & Diesmann, M. (1999). Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biological Cybernetics, 81, 381–402.PubMedGoogle Scholar
  113. Rubin, J., Lee, D., & Sompolinsky, H. (2001). Equilibrium properties of temporally asymmetric Hebbian plasticity. Physical Review Letters, 86, 364–367.PubMedGoogle Scholar
  114. Rudolph, M., & Destexhe, A. (2006). Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies. Neural Computation, 18, 2146–2210.PubMedGoogle Scholar
  115. Rudolph, M., & Destexhe, A. (2007). How much can we trust neural simulation strategies? Neurocomputing, 70, 1966–1969.Google Scholar
  116. Saghatelyan, A., Roux, P., Migliore, M., Rochefort, C., Desmaisons, D., Charneau, P., et al. (2005). Activity-dependent adjustments of the inhibitory network in the olfactory bulb following early postnatal deprivation. Neuron, 46, 103–116.PubMedGoogle Scholar
  117. Sanchez-Montanez, M. (2001). Strategies for the optimization of large scale networks of integrate and fire neurons. In J. Mira & A. Prieto (Eds.), IWANN, Volume 2084/2001 of Lecture Notes in Computer Science. New York: Springer-Verlag.Google Scholar
  118. Sandström, M., Kotaleski, J. H., & Lansner, A. (2007). Scaling effects in the olfactory bulb. Neurocomputing, 70, 1802–1807.Google Scholar
  119. Shelley, M. J., & Tao, L (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of Computatonal Neuroscience, 11, 111–119.Google Scholar
  120. Sleator, D., & Tarjan, R. (1983). Self-adjusting binary trees. In Proceedings of the 15th ACM SIGACT Symposium on Theory of Computing (pp. 235–245).Google Scholar
  121. Sloot, A., Kaandorp, J. A., Hoekstra, G., & Overeinder, B. J. (1999). Distributed simulation with cellular automata: Architecture and applications. In J. Pavelka, G. Tel, & M. Bartosek (Eds.), SOFSEM’99, LNCS (pp. 203–248). Berlin: Springer-Verlag.Google Scholar
  122. Song, S., & Abbott, L. F. (2001). Cortical development and remapping through spike timing-dependent plasticity. Neuron, 32, 339–350.PubMedGoogle Scholar
  123. Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3, 919–926.PubMedGoogle Scholar
  124. Stricanne, B., & Bower, J. M. (1998). A network model of the somatosensory system cerebellum, exploring recovery from peripheral lesions at various developmental stages in rats (abstract). Society of Neuroscience Abstracts, 24, 669.Google Scholar
  125. Traub, R. D., & Miles, R. (1991). Neuronal Networks of the Hippocampus. Cambridge UK: Cambridge University Press.Google Scholar
  126. Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau, F. E. N., Roopun, A., et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of Neurophysiology, 93, 2194–2232.PubMedGoogle Scholar
  127. Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10, 821–835.PubMedGoogle Scholar
  128. Tuckwell, H. (1988). Introduction to theoretical neurobiology, volume 1: Linear cable theory and dendritic structure. Cambridge: Cambridge University Press.Google Scholar
  129. van Emde Boas, P., Kaas, R., & Zijlstra, E. (1976). Design and implementation of an efficient priority queue. Theory of Computing Systems, 10, 99–127.Google Scholar
  130. Vitko, I., Chen, Y. C., Arias, J. M., Shen, Y., Wu, X. R., & Perez-Reyes, E. (2005). Functional characterization and neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-type calcium channel. Journal of Neuroscience, 25, 4844–4855.PubMedGoogle Scholar
  131. Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25, 10786–10795.PubMedGoogle Scholar
  132. Waikul, K. K., Jiang, L. J., Wilson, E. C., Harris, F. C. Jr, & Goodman, P. H. (2002). Design and implementation of a web portal for a NeoCortical Simulator. In Proceedings of the 17th International Conference on Computers and their Applications (CATA 2002) (pp. 349–353).Google Scholar
  133. Wang, Y., Markram, H., Goodman, P. H., Berger, T. K., Ma, J., & Goldman-Rakic, P.S. (2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature Neuroscience, 9, 534–542.PubMedGoogle Scholar
  134. Watts, L. (1994). Event-driven simulation of networks of spiking neurons. Advances in neural information processing systems (pp. 927–934).Google Scholar
  135. Wiebers, J. L., Goodman, P. H., & Markram, H. (2000). Blockade of A-type potassium channels recovers memory impairment caused by synaptic loss: Implications for Alzheimer’s dementia (abstract). Journal of Investigative Medicine, 48, 283S.Google Scholar
  136. Wills, H. R., Kellogg, M. M., & Goodman, P. H. (1999). A biologically realistic computer model of neocortical associative learning for the study of aging and dementia (abstract). Journal of Investigative Medicine, 47, 11S.Google Scholar
  137. Wilson, M. A., & Bower, J. M. (1989). The simulation of large-scale neural networks. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From synapses to networks (pp. 291–333). Cambridge: MIT Press.Google Scholar
  138. Wohrer, A., Kornprobst, P., & Vieville, T. (2006). From light to spikes: A large-scale retina simulator. In Proceedings of the IJCNN 2006 (pp. 8995–9003). Vancouver, ISBN: 0-7803-9490-9.Google Scholar
  139. Wolf, J. A., Moyer, J. T., Lazarewicz, M. T., Contreras, D., Benoit-Marand, M., O’Donnell, P., et al. (2005). NMDA/AMPA ratio impacts state transitions and entrainment to oscillations. Journal of Neuroscience, 25, 9080–9095.PubMedGoogle Scholar
  140. Zeigler, B., Praehofer, H., & Kim, T. (2000). Theory of modeling and simulation, second edn. Integrating discrete event and continuous complex dynamic systems. New York: Academic Press.Google Scholar
  141. Zeigler, B. P., & Vahie, S. (1993). DEVS formalism and methodology: Unity of conception/diversity of application. In Proceedings of the 1993 Winter Simulation Conference (pp. 573–579). Los Angeles, December 12–15.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Romain Brette
    • 1
  • Michelle Rudolph
    • 2
  • Ted Carnevale
    • 3
  • Michael Hines
    • 3
  • David Beeman
    • 4
  • James M. Bower
    • 5
  • Markus Diesmann
    • 6
    • 7
  • Abigail Morrison
    • 7
  • Philip H. Goodman
    • 8
  • Frederick C. HarrisJr.
    • 8
  • Milind Zirpe
    • 8
  • Thomas Natschläger
    • 9
  • Dejan Pecevski
    • 10
  • Bard Ermentrout
    • 11
  • Mikael Djurfeldt
    • 12
  • Anders Lansner
    • 12
  • Olivier Rochel
    • 13
  • Thierry Vieville
    • 14
  • Eilif Muller
    • 15
  • Andrew P. Davison
    • 2
  • Sami El Boustani
    • 2
  • Alain Destexhe
    • 2
    • 16
  1. 1.Ecole Normale SupérieureParisFrance
  2. 2.CNRSGif-sur-YvetteFrance
  3. 3.Yale UniversityNew HavenUSA
  4. 4.University of ColoradoBoulderUSA
  5. 5.University of TexasSan AntonioUSA
  6. 6.University of FreiburgFreiburgGermany
  7. 7.RIKEN Brain Science InstituteWako CityJapan
  8. 8.University of NevadaRenoUSA
  9. 9.Software Competence Center HagenbergHagenbergAustria
  10. 10.Technical University of GrazGrazAustria
  11. 11.University of PittsburghPittsburghUSA
  12. 12.KTHStockholmSweden
  13. 13.University of LeedsLeedsUK
  14. 14.INRIANiceFrance
  15. 15.Kirchhoff Institute for PhysicsHeidelbergGermany
  16. 16.Unité de Neurosciences Intégratives, et Computationnelles (UNIC)CNRS (Bat 33)Gif-sur-YvetteFrance

Personalised recommendations