Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC

  • Dezhe Z. JinEmail author
  • Fethi M. Ramazanoğlu
  • H. Sebastian Seung


Avian brain area HVC is known to be important for the production of birdsong. In zebra finches, each RA-projecting neuron in HVC emits a single burst of spikes during a song motif. The population of neurons is activated in a precisely timed, stereotyped sequence. We propose a model of these burst sequences that relies on two hypotheses. First, we hypothesize that the sequential order of bursting is reflected in the excitatory synaptic connections between neurons. Second, we propose that the neurons are intrinsically bursting, so that burst duration is set by cellular properties. Our model generates burst sequences similar to those observed in HVC. If intrinsic bursting is removed from the model, burst sequences can also be produced. However, they require more fine-tuning of synaptic strengths, and are therefore less robust. In our model, intrinsic bursting is caused by dendritic calcium spikes, and strong spike frequency adaptation in the soma contributes to burst termination.


Songbird Associative chaining model Dendritic spike Sequence generation Computational model 



Research was supported by The Huck Institute of Life Sciences at the Pennsylvania State University and Alfred P. Sloan Fellowship (DZJ), and Howard Hughes Medical Institute (FR, HSS). DZJ thanks the Kavli Institute for Theoretical Physics at University of California, Santa Barbara for partial support of this work. We thank Michael Long, Anthony Leonardo and Michale Fee for useful discussions.


  1. Abeles, M. (1982). Local cortical circuits: An electrophysiological study (pp. 83–92). Berlin Heidelberg New York: Springer.Google Scholar
  2. Abeles, M. (1991). Corticonics. Cambridge, UK: Cambridge University Press.Google Scholar
  3. Amari, S. (1972). Learning patterns and pattern sequences by self-organizing nets of threshold elements. IEEE Transactions on Computers, C-21, 1197–1206.CrossRefGoogle Scholar
  4. Brainard, M. S., & Doupe, A. J. (2000). Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature, 404, 762–766.CrossRefPubMedGoogle Scholar
  5. Brumberg, J. C., Nowak, L. G., & McCormick, D. A. (2000). Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons. Journal of Neuroscience, 20, 4829–4843.PubMedGoogle Scholar
  6. Cardin, J. A., Raksin, J. N., & Schmidt, M. F. (2004). The sensorimotor nucleus NIf is necessary for auditory processing but not vocal motor output in the avian song system. Journal of Neurophysiology.Google Scholar
  7. Cateau, H., & Fukai, T. (2001). Fokker–Planck approach to the pulse packet propagation in synfire chain. Neural Networks, 14, 675–685.CrossRefPubMedGoogle Scholar
  8. Chi, Z., & Margoliash, D. (2001). Temporal precision and temporal drift in brain and behavior of zebra finch song. Neuron, 32, 899–910.CrossRefPubMedGoogle Scholar
  9. Coleman, M. J., & Vu, E. T. (2005). Recovery of impaired songs following unilateral but not bilateral lesions of nucleus uvaeformis of adult zebra finches. Journal of Neurobiology, 63, 70–89.CrossRefPubMedGoogle Scholar
  10. Crook, S. M., Ermentrout, G. B., & Bower, J. M. (1998). Spike frequency adaptation affects the synchronization properties of networks of cortical oscillations. Neural Computation, 10, 837–854.CrossRefPubMedGoogle Scholar
  11. Davis, G. W. (2006). Homeostatic control of neural activity: From phenomenology to molecular design. Annual Review of Neuroscience, 29, 307–323.CrossRefPubMedGoogle Scholar
  12. Denk, W., & Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol, 2, e329.CrossRefPubMedGoogle Scholar
  13. Diesmann, M., Gewaltig, M. O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402, 529–533.CrossRefPubMedGoogle Scholar
  14. Dodson, P. D., Barker, M. C., & Forsythe, I. D. (2002). Two heteromeric Kv1 potassium channels differentially regulate action potential firing. Journal of Neuroscience, 22, 6953–6961.PubMedGoogle Scholar
  15. Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience, 22, 567–631.CrossRefPubMedGoogle Scholar
  16. Doya, K., & Sejnowski, T. J. (1999). A computational model of avian song learning. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences. Cambridge, MA: MIT Press.Google Scholar
  17. Drew, P. J., & Abbott, L. F. (2003). Model of song selectivity and sequence generation in area HVc of the songbird. Journal of Neurophysiology, 89, 2697–2706.CrossRefPubMedGoogle Scholar
  18. Dutar, P., Vu, H. M., & Perkel, D. J. (1998). Multiple cell types distinguished by physiological, pharmacological, and anatomic properties in nucleus HVc of the adult zebra finch. Journal of Neurophysiology, 80, 1828–1838.PubMedGoogle Scholar
  19. Ermentrout, B. (1998). The analysis of synaptically generated traveling waves. Journal of Computational Neuroscience, 5, 191–208.CrossRefPubMedGoogle Scholar
  20. Estes, W. K. (1972). An associative basis for coding and organisation in memory. In A. W. Melton, & E. Martin (Eds.), Coding processes in human memory. Washington, DC: Winston.Google Scholar
  21. Euler, T., Detwiler, P. B., & Denk, W. (2002). Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature, 418, 845–852.CrossRefPubMedGoogle Scholar
  22. Fee, M. S., Kozhevnikov, A. A., & Hahnloser, R. H. (2004). Neural mechanisms of vocal sequence generation in the songbird. Annals of the New York Academy of Sciences, 1016, 153–170.CrossRefPubMedGoogle Scholar
  23. Fortune, E. S., & Margoliash, D. (1995). Parallel pathways and convergence onto HVc and adjacent neostriatum of adult zebra finches (Taeniopygia guttata). Journal of Comparative Neurology, 360, 413–441.CrossRefPubMedGoogle Scholar
  24. Franceschetti, S., Guatteo, E., Panzica, F., Sancini, G., Wanke, E., & Avanzini, G. (1995). Ionic mechanisms underlying burst firing in pyramidal neurons: Intracellular study in rat sensorimotor cortex. Brain Research, 696, 127–139.CrossRefPubMedGoogle Scholar
  25. Golding, N. L., Jung, H. Y., Mickus, T., & Spruston, N. (1999). Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. Journal of Neuroscience, 19, 8789–8798.PubMedGoogle Scholar
  26. Golomb, D., & Amitai, Y. (1997). Propagating neuronal discharges in neocortical slices: Computational and experimental study. Journal of Neurophysiology, 78, 1199–1211.PubMedGoogle Scholar
  27. Hahnloser, R. H., Kozhevnikov, A. A., & Fee, M. S. (2002). An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature, 419, 65–70.CrossRefPubMedGoogle Scholar
  28. Hahnloser, R. H., Kozhevnikov, A. A., & Fee, M. S. (2006). Sleep-related neural activity in a premotor and a basal-ganglia pathway of the songbird. Journal of Neurophysiology, 96, 794–812.CrossRefPubMedGoogle Scholar
  29. Hausser, M., Spruston, N., & Stuart, G. J. (2000). Diversity and dynamics of dendritic signaling. Science, 290, 739–744.CrossRefPubMedGoogle Scholar
  30. Hermann, M., Hertz, J. A., & Prugel-Bennet, A. (1995). Analysis of synfire chains. Network: Computation in Neural Systems, 6, 403–414.CrossRefGoogle Scholar
  31. Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medulated axon. Journal of Physiology, 107, 165–181.PubMedGoogle Scholar
  32. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology (London), 117, 500–544.Google Scholar
  33. Immelmann, K. (1969). Song development in the zebra finch and other estrildid finches. In R. Hinde (Ed.), Bird vocalization (pp. 61–74). Cambridge, UK: Cambridge University Press.Google Scholar
  34. Katz, L. C., & Gurney, M. E. (1981). Auditory responses in the zebra finch’s motor system for song. Brain Research, 221, 192–197.CrossRefPubMedGoogle Scholar
  35. Kistler, W. M. (2000). Stability properties of solitary waves and periodic wave trains in a two-dimensional network of spiking neurons. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 62, 8834–8837.PubMedGoogle Scholar
  36. Kistler, W. M., & Gerstner, W. (2002). Stable propagation of activity pulses in populations of spiking neurons. Neural Computation, 14, 987–997.CrossRefPubMedGoogle Scholar
  37. Kleinfeld, D. (1986). Sequential state generation by model neural networks. Proceedings of the National Academy of Sciences of the United States of America, 83, 9469–9473.CrossRefPubMedGoogle Scholar
  38. Konishi, M. (1965). The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Zeitschrift für Tierpsychologie, 22, 770–783.PubMedGoogle Scholar
  39. Kozhevnikov, A., & Fee, M. S. (2006). Singing-related activity of identified HVC neurons in the zebra finch. Journal of Neurophysiology.Google Scholar
  40. Kubota, M., & Taniguchi, I. (1998). Electrophysiological characteristics of classes of neuron in the HVc of the zebra finch. Journal of Neurophysiology, 80, 914–923.PubMedGoogle Scholar
  41. Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior (the Hixon Symposium) (pp. 112–136). New York: Wiley.Google Scholar
  42. Leonardo, A., & Fee, M. S. (2005). Ensemble coding of vocal control in birdsong. Journal of Neuroscience, 25, 652–661.CrossRefPubMedGoogle Scholar
  43. Lewicki, M. S. (1996). Intracellular characterization of song-specific neurons in the zebra finch auditory forebrain. Journal of Neuroscience, 16, 5855–5863.PubMedGoogle Scholar
  44. Lien, C. C., & Jonas, P. (2003). Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. Journal of Neuroscience, 23, 2058–2068.PubMedGoogle Scholar
  45. Manis, P. B., & Marx, S. O. (1991). Outward currents in isolated ventral cochlear nucleus neurons. Journal of Neuroscience, 11, 2865–2880.PubMedGoogle Scholar
  46. Mattia, D., Kawasaki, H., & Avoli, M. (1997). In vitro electrophysiology of rat subicular bursting neurons. Hippocampus, 7, 48–57.CrossRefPubMedGoogle Scholar
  47. Mooney, R. (2000). Different subthreshold mechanisms underlie song selectivity in identified HVc neurons of the zebra finch. Journal of Neuroscience, 20, 5420–5436.PubMedGoogle Scholar
  48. Mooney, R., Hoese, W., & Nowicki, S. (2001). Auditory representation of the vocal repertoire in a songbird with multiple song types. Proceedings of the National Academy of Sciences of the United States of America, 98, 12778–12783.CrossRefPubMedGoogle Scholar
  49. Mooney, R., & Prather, J. F. (2005). The HVC microcircuit: The synaptic basis for interactions between song motor and vocal plasticity pathways. Journal of Neuroscience, 25, 1952–1964.CrossRefPubMedGoogle Scholar
  50. Nixdorf, B. E., Davis, S. S., & DeVoogd, T. J. (1989). Morphology of Golgi-impregnated neurons in hyperstriatum ventralis, pars caudalis in adult male and female canaries. Journal of Comparative Neurology, 284, 337–349.CrossRefPubMedGoogle Scholar
  51. Nottebohm, F., Kelley, D. B., & Paton, J. A. (1982). Connections of vocal control nuclei in the canary telencephalon. Journal of Comparative Neurology, 207, 344–357.CrossRefPubMedGoogle Scholar
  52. Nottebohm, F., Stokes, T. M., & Leonard, C. M. (1976). Central control of song in the canary, Serinus canarius. Journal of Comparative Neurology, 165, 457–486.CrossRefPubMedGoogle Scholar
  53. Osan, R., Curtu, R., Rubin, J., & Ermentrout, B. (2004). Multiple-spike waves in a one-dimensional integrate-and-fire neural network. Journal of Mathematical Biology, 48, 243–274.CrossRefPubMedGoogle Scholar
  54. Pinsky, P. F., & Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. Journal of Computational Neuroscience, 1, 39–60.CrossRefPubMedGoogle Scholar
  55. Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. (1992). Numerical recipes in C. Cambridge, UK: Cambridge University Press.Google Scholar
  56. Rathouz, M., & Trussell, L. (1998). Characterization of outward currents in neurons of the avian nucleus magnocellularis. Journal of Neurophysiology, 80, 2824–2835.PubMedGoogle Scholar
  57. Reyes, A. D. (2003). Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nature Neuroscience, 6, 593–599.CrossRefPubMedGoogle Scholar
  58. Reyes, A. D., Rubel, E. W., & Spain, W. J. (1994). Membrane properties underlying the firing of neurons in the avian cochlear nucleus. Journal of Neuroscience, 14, 5352–5364.PubMedGoogle Scholar
  59. Rinzel, J., & Ermentrout, G. B. (1989). Analysis of neural excitability and oscillations. In C. Koch, & I. Segev (Eds.), Methods in neuronal modeling. Cambridge: MIT Press.Google Scholar
  60. Scharff, C., Kirn, J. R., Grossman, M., Macklis, J. D., & Nottebohm, F. (2000). Targeted neuronal death affects neuronal replacement and vocal behavior in adult songbirds. Neuron, 25, 481–492.CrossRefPubMedGoogle Scholar
  61. Schiller, J., Major, G., Koester, H. J., & Schiller, Y. (2000). NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature, 404, 285–289.CrossRefPubMedGoogle Scholar
  62. Schwindt, P., & Crill, W. (1999). Mechanisms underlying burst and regular spiking evoked by dendritic depolarization in layer 5 cortical pyramidal neurons. Journal of Neurophysiology, 81, 1341–1354.PubMedGoogle Scholar
  63. Sompolinsky, H., & Kanter, I. I. (1986). Temporal association in asymmetric neural networks. Physical Review Letters, 57, 2861–2864.CrossRefPubMedGoogle Scholar
  64. Svirskis, G., Kotak, V., Sanes, D. H., & Rinzel, J. (2002). Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons. Journal of Neuroscience, 22, 11019–11025.PubMedGoogle Scholar
  65. Trachtenberg, J. T., Chen, B. E., Knott, G. W., Feng, G., Sanes, J. R., Welker, E., et al. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature, 420, 788–794.CrossRefPubMedGoogle Scholar
  66. Traub, R. D., Jefferys, J. G., & Miles, R. (1993). Analysis of the propagation of disinhibition-induced after-discharges along the guinea-pig hippocampal slice in vitro. Journal of Physiology, 472, 267–287.PubMedGoogle Scholar
  67. Traub, R. D., Jefferys, J. G., Miles, R., Whittington, M. A., & Toth, K. (1994). A branching dendritic model of a rodent CA3 pyramidal neurone. Journal of Physiology, 481(Pt 1), 79–95.PubMedGoogle Scholar
  68. Troyer, T. W., & Doupe, A. J. (2000). An associational model of birdsong sensorimotor learning II. Temporal hierarchies and the learning of song sequence. Journal of Neurophysiology, 84, 1224–1239.PubMedGoogle Scholar
  69. Tsai, P. S., Friedman, B., Ifarraguerri, A. I., Thompson, B. D., Lev-Ram, V., Schaffer, C. B., et al. (2003). All-optical histology using ultrashort laser pulses. Neuron, 39, 27–41.CrossRefPubMedGoogle Scholar
  70. Vicario, D. S. (1991). Organization of the zebra finch song control system: II. Functional organization of outputs from nucleus Robustus archistriatalis. Journal of Comparative Neurology, 309, 486–494.CrossRefPubMedGoogle Scholar
  71. Vu, E. T., Mazurek, M. E., & Kuo, Y. C. (1994). Identification of a forebrain motor programming network for the learned song of zebra finches. Journal of Neuroscience, 14, 6924–6934.PubMedGoogle Scholar
  72. Wang, L. Y., Gan, L., Forsythe, I. D., & Kaczmarek, L. K. (1998). Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. Journal of Physiology, 509(Pt 1), 183–194.CrossRefPubMedGoogle Scholar
  73. Wang, X. J. (1999). Fast burst firing and short-term synaptic plasticity: A model of neocortical chattering neurons. Neuroscience, 89, 347–362.CrossRefPubMedGoogle Scholar
  74. Wei, D. S., Mei, Y. A., Bagal, A., Kao, J. P., Thompson, S. M., & Tang, C. M. (2001). Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science, 293, 2272–2275.CrossRefPubMedGoogle Scholar
  75. Wild, J. M., Williams, M. N., Howie, G. J., & Mooney, R. (2005). Calcium-binding proteins define interneurons in HVC of the zebra finch (Taeniopygia guttata). Journal of Comparative Neurology, 483, 76–90.CrossRefPubMedGoogle Scholar
  76. Williams, H. (2004). Birdsong and singing behavior. Annals of the New York Academy of Sciences, 1016, 1–30.CrossRefPubMedGoogle Scholar
  77. Williams, H., & Vicario, D. S. (1993). Temporal patterning of song production: Participation of nucleus uvaeformis of the thalamus. Journal of Neurobiology, 24, 903–912.CrossRefPubMedGoogle Scholar
  78. Wong, R. K., & Stewart, M. (1992). Different firing patterns generated in dendrites and somata of CA1 pyramidal neurones in guinea-pig hippocampus. Journal of Physiology, 457, 675–687.PubMedGoogle Scholar
  79. Yu, A. C., & Margoliash, D. (1996). Temporal hierarchical control of singing in birds. Science, 273, 1871–1875.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Dezhe Z. Jin
    • 1
    Email author
  • Fethi M. Ramazanoğlu
    • 2
  • H. Sebastian Seung
    • 3
  1. 1.Department of PhysicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Howard Hughes Medical Institute and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations