Journal of Computational Neuroscience

, Volume 23, Issue 2, pp 217–235 | Cite as

Transitions between irregular and rhythmic firing patterns in excitatory-inhibitory neuronal networks

  • Janet BestEmail author
  • Choongseok Park
  • David Terman
  • Charles Wilson


Changes in firing patterns are an important hallmark of the functional status of neuronal networks. We apply dynamical systems methods to understand transitions between irregular and rhythmic firing in an excitatory-inhibitory neuronal network model. Using the geometric theory of singular perturbations, we systematically reduce the full model to a simpler set of equations, one that can be studied analytically. The analytic tools are used to understand how an excitatory-inhibitory network with a fixed architecture can generate both activity patterns for possibly different values of the intrinsic and synaptic parameters. These results are applied to a recently developed model for the subthalamopallidal network of the basal ganglia. The results suggest that an increase in correlated activity, corresponding to a pathological state, may be due to an increased level of inhibition from the striatum to the inhibitory GPe cells along with an increased ability of the excitatory STN neurons to generate rebound bursts.


Excitatory-inhibitory network Synchronization Basal ganglia Singular perturbation analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72, 507–520.PubMedGoogle Scholar
  2. Bevan, M. D., Magill, P. J., Terman, D., Bolam, J. P., & Wilson, C. J. (2002). Move to the rhythm: Oscillations in the subthalamic nucleus-external globus pallidus network. Trends in Neuroscience, 25, 523–531.CrossRefGoogle Scholar
  3. Cragg, S., Baufreton, J., Xue, Y., Bolam, J., & Bevan, M. (2004). Synaptic release of dopamine in the subthalamic nucleus. European Journal of Neuroscience, 20, 1788–1802.PubMedCrossRefGoogle Scholar
  4. Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems. Philadelphia: SIAM.Google Scholar
  5. Golomb, D., & Rinzel, J. (1994). Clustering in globally coupled inhibitory neurons. Physica D, 72, 259–282.CrossRefGoogle Scholar
  6. Golomb, D., Wang, X. J., & Rinzel, J. (1994). Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. Journal of Neurophysiology, 72, 1109–1126.PubMedGoogle Scholar
  7. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrance current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.PubMedGoogle Scholar
  8. Hurtado, J., Gray, C., Tamas, L., & Sigvardt, K. (1999). Dynamics of tremor-related oscillations in the human globus pallidus: A single case study. Proceedings of the National Academy of Sciences of the United States of America, 96, 1674–1679.PubMedCrossRefGoogle Scholar
  9. Jolliffe, I. (1986). Principal component analysis. New York: Springer.Google Scholar
  10. Kopell, N., & Ermentrout, G. B. (2002). Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators. In B. Fiedler & G. Iooss (Eds.), Handbook of Dynamical Systems II: Towards Applications (pp. 3–54). Amsterdam: Elsevier.Google Scholar
  11. Kuramoto, Y. (1984). Chemical oscillations, waves and turbulence. New York: Springer.Google Scholar
  12. Magnin, M., Morel, A., & Jeanmonod, D. (2000). Single-unit analysis of the pallidum, thalamus, and subthalamic nucleus in parkinsonian patients. Neuroscience, 96, 549–564.PubMedCrossRefGoogle Scholar
  13. Nejshtadt, A. (1985). Asymptotic investigation of the loss of stability by an equilibrium as a pair of eigenvalues slowly cross the imaginary axis. Uspehi matematičeskih nauk, 40, 190–191.Google Scholar
  14. Parra, P., Gulyas, A. I., & Miles, R. (1998). How many subtypes of inhibitory cells in the hippocampus? Neuron, 20, 983–993.PubMedCrossRefGoogle Scholar
  15. Pinkus, A. (2000). Weierstrass and approximation theory. Journal of Approximation Theory, 107, 1–66.CrossRefGoogle Scholar
  16. Pinsky, P., & Rinzel, J. (1995). Synchrony measures for biological neural networks. Biological Cybernetics, 73, 129–137.PubMedGoogle Scholar
  17. Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and tremulous 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine vervet model of parkinsonism. Journal of Neuroscience, 20, 8559–8571.PubMedGoogle Scholar
  18. Reyes, A. (2003). Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nature Neuroscience, 6, 593–599.PubMedCrossRefGoogle Scholar
  19. Rinzel, J. (1985). Bursting oscillations in an excitable membrane model. In B. Sleeman & R. Jarvis (Eds.), Ordinary and Partial Differential Equations. New York: Springer-Verlag.Google Scholar
  20. Rinzel, J. (1987). A formal classification of bursting mechanisms in excitable systems. In A. Gleason (Ed.), Proceedings of the International Congress of Mathematicians, American Mathematical Society, Providence, RI (pp. 1578–1594).Google Scholar
  21. Rubin, J., & Terman, D. (2000). Analysis of clustered firing patterns in synaptically coupled networks of oscillators. Journal of Mathematical Biology, 41, 513–545.PubMedCrossRefGoogle Scholar
  22. Rubin, J., & Terman, D. (2000). Geometric analysis of population rhythms in synaptically coupled neuronal networks. Neural Computation, 12, 597–645.PubMedCrossRefGoogle Scholar
  23. Rubin, J., & Terman, D. (2002). Geometric singular perturbation analysis of neuronal dynamics. In B. Fiedler & G. Iooss (Eds.), Handbook of Dynamical Systems II: Towards Applications (pp. 93–146). Amsterdam: Elsevier.Google Scholar
  24. Steriade, M., McCormick, D., & Sejnowski, T. (1993). Thalamocortical oscillations in the sleep and aroused brain. Science, 262, 679–685.PubMedCrossRefGoogle Scholar
  25. Strogatz, S., & Mirollo, R. (1991). Stability of incoherence in a population of coupled oscillators. Journal of Statistical Physics, 63, 613–636.CrossRefGoogle Scholar
  26. Su, J., Rubin, J., & Terman, D. (2003). Effects of noise on elliptic bursters. Nonlinearity, 17, 133–157.CrossRefGoogle Scholar
  27. Terman, D., Bose, A., & Kopell, N. (1996). Functional reorganization in thalamocortical networks: Transition between spindling and delta sleep rhythms. Proceedings of the National Academy of Sciences of the United States of America, 93, 15417–15422.PubMedCrossRefGoogle Scholar
  28. Terman, D., Rubin, J., Yew, A., & Wilson, C. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22, 2963–2976.PubMedGoogle Scholar
  29. Thunberg, H. (2001). Periodicity versus chaos in one-dimensional dynamics. SIAM Review, 43, 3–30.CrossRefGoogle Scholar
  30. van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balance state in a model of cortical circuits. Neural Computation, 10, 1321–1371.PubMedCrossRefGoogle Scholar
  31. Wang, X. J., Golomb, D., & Rinzel, J. (1995). Emergent spindle oscillations and intermittent burst firing in a thalamic model: Specific neuronal mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 92, 5577–5581.PubMedCrossRefGoogle Scholar
  32. Wang, X. J., & Rinzel, J. (1992). Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation, 4, 84–97.Google Scholar
  33. Wang, X. J., & Rinzel, J. (1993). Spindle rhythmicity in the reticularis thalamic nucleus: Synchronization among mutually inhibitory neurons. Neuroscience, 53, 899–904.PubMedCrossRefGoogle Scholar
  34. Wilson, C. J. (2004). Basal ganglia. In G.M. Shepherd (Ed.), The Synaptic Organization of the Brain (pp. 361–413). New York: Oxford.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Janet Best
    • 1
    • 2
    Email author
  • Choongseok Park
    • 1
  • David Terman
    • 1
    • 2
  • Charles Wilson
    • 3
  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA
  2. 2.Mathematical Biosciences InstituteThe Ohio State UniversityColumbusUSA
  3. 3.Division of Life SciencesUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations