Advertisement

Journal of Computational Neuroscience

, Volume 23, Issue 2, pp 201–216 | Cite as

Roles of IA and morphology in action potential propagation in CA1 pyramidal cell dendrites

  • Corey D. AckerEmail author
  • John A. White
Article

Abstract

Dendrites of CA1 pyramidal cells of the hippocampus, along with those of a wide range of other cell types, support active backpropagation of axonal action potentials. Consistent with previous work, recent experiments demonstrating that properties of synaptic plasticity are different for distal synapses, suggest an important functional role of bAPs, which are known to be prone to failure in distal locations. Using conductance-based models of CA1 pyramidal cells, we show that underlying “traveling wave attractors” control action potential propagation in the apical dendrites. By computing these attractors, we dissect and quantify the effects of IA channels and dendritic morphology on bAP amplitudes. We find that non-uniform activation properties of IA can lead to backpropagation failure similar to that observed experimentally in these cells. Amplitude of forward propagation of dendritic spikes also depends strongly on the activation dynamics of IA. IA channel properties also influence transients at dendritic branch points and whether or not propagation failure results. The branching pattern in the distal apical dendrites, combined with IA channel properties in this region, ensure propagation failure in the apical tuft for a large range of IA conductance densities. At the same time, these same properties ensure failure of forward propagating dendritic spikes initiated in the distal tuft in the absence of some form of cooperativity of synaptic activation.

Keywords

Backpropagation Propagation failure Traveling wave attractor bAP Dendritic spike 

Notes

Acknowledgements

The authors would like to thank: Georgi Medvedev (Drexel University) and Eugene Wayne (Boston University) for early, stimulating input; Bard Ermentrout (University of Pittsburgh) for technical help with XPPAUT; and Jonathan Bettencourt, Kyle Lillis, and Theoden Netoff (NDL, Boston University) for feedback and help editing the final manuscript.

Supplementary material

10827_2007_28_MOESM1_ESM.pdf (27 kb)
Supplement 1 Traveling Waves in XPPAUT, a Tutorial (PDF 27KB)
10827_2007_28_MOESM2_ESM.ode (3 kb)
Supplement 2 (ODE 3.12KB)

References

  1. Acker, C. D., Kopell, N., & White, J. A. (2003). Synchronization of strongly coupled excitatory neurons: Relating network behavior to biophysics. Journal of Computational Neuroscience, 15, 71–90.PubMedCrossRefGoogle Scholar
  2. Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18, 10464–10472.PubMedGoogle Scholar
  3. Dayan P., Abbott LF (2001) Theoretical neuroscience: Computational and mathematical modeling of neural systems, (p. 220). Cambridge: MIT Press.Google Scholar
  4. Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems. Philadelphia, PA: SIAM.Google Scholar
  5. Frick, A., Magee, J., & Johnston, D. (2004). LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nature Neuroscience, 7, 126–135.PubMedCrossRefGoogle Scholar
  6. Froemke, R. C., Poo, M. M., & Dan, Y. (2005). Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature, 434, 221–225.PubMedCrossRefGoogle Scholar
  7. Gasparini, S., & Magee, J. C. (2002). Phosphorylation-dependent differences in the activation properties of distal and proximal dendritic Na+ channels in rat CA1 hippocampal neurons. Journal of Physiology, 541, 665–672.PubMedCrossRefGoogle Scholar
  8. Gasparini, S., Migliore, M., & Magee, J. C. (2004). On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. Journal of Neuroscience, 24, 11046–11056.PubMedCrossRefGoogle Scholar
  9. Golding, N. L., Kath, W. L., & Spruston, N. (2001). Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. Journal of Neurophysiology, 86, 2998–3010.PubMedGoogle Scholar
  10. Golding, N. L., Staff, N. P., & Spruston, N. (2002). Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature, 418, 326–331.PubMedCrossRefGoogle Scholar
  11. Goldstein, S. S., & Rall, W. (1974). Changes of action potential shape and velocity for changing core conductor geometry. Biophysical Journal, 14, 731–757.PubMedGoogle Scholar
  12. Gulledge, A. T., Kampa, B. M., & Stuart, G. J. (2005). Synaptic integration in dendritic trees. Journal of Neurobiology, 64, 75–90.PubMedCrossRefGoogle Scholar
  13. Häusser, M., Spruston, N., & Stuart, G. J. (2000). Diversity and dynamics of dendritic signaling. Science, 290, 739–744.PubMedCrossRefGoogle Scholar
  14. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.PubMedGoogle Scholar
  15. Hoffman, D. A., & Johnston, D. (1998). Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. Journal of Neuroscience, 18, 3521–3528.PubMedGoogle Scholar
  16. Hoffman, D. A., Magee, J. C., Colbert, C. M., & Johnston, D. (1997). K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature, 387, 869–875.PubMedCrossRefGoogle Scholar
  17. Jarsky, T., Roxin, A., Kath, W. L., & Spruston, N. (2005). Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nature Neuroscience, 8, 1667–1676.PubMedCrossRefGoogle Scholar
  18. Johnston, D., Christie, B. R., Frick, A., Gray, R., Hoffman, D. A., Schexnayder, L. K., et al. (2003). Active dendrites, potassium channels and synaptic plasticity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 667–674.PubMedCrossRefGoogle Scholar
  19. Johnston, D., Hoffman, D. A., Colbert, C. M., & Magee, J. C. (1999). Regulation of back-propagating action potentials in hippocampal neurons. Current Opinion in Neurobiology, 9, 288–292.PubMedCrossRefGoogle Scholar
  20. Magee, J. C., & Johnston, D. (1997). A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science, 275, 209–213.PubMedCrossRefGoogle Scholar
  21. Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.PubMedCrossRefGoogle Scholar
  22. Manor, Y., Koch, C., & Segev, I. (1991). Effect of geometrical irregularities on propagation delay in axonal trees. Biophysical Journal, 60, 1424–1437.PubMedCrossRefGoogle Scholar
  23. Markram, H., Lubke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–215.PubMedCrossRefGoogle Scholar
  24. Migliore, M., Hoffman, D. A., Magee, J. C., & Johnston, D. (1999). Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of Computational Neuroscience, 7, 5–15.PubMedCrossRefGoogle Scholar
  25. Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity. Experimental Neurology, 1, 491–527.PubMedCrossRefGoogle Scholar
  26. Rhodes, K. J., Carroll, K. I., Sung, M. A., Doliveira, L. C., Monaghan, M. M., Burke, S. L., et al. (2004). KChIPs and Kv4 alpha subunits as integral components of A-type potassium channels in mammalian brain. Journal of Neuroscience, 24, 7903–7915.PubMedCrossRefGoogle Scholar
  27. Sjöstrom, P. J., & Häusser, M. (2006). A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron, 51, 227–238.PubMedCrossRefGoogle Scholar
  28. Spruston, N., Schiller, Y., Stuart, G., & Sakmann, B. (1995). Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science, 268, 297–300.PubMedCrossRefGoogle Scholar
  29. Stuart, G. J., & Häusser, M. (2001). Dendritic coincidence detection of EPSPs and action potentials. Nature Neuroscience, 4, 63–71.PubMedCrossRefGoogle Scholar
  30. Stuart, G. J., & Sakmann, B. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature, 367, 69–72.PubMedCrossRefGoogle Scholar
  31. Vetter, P., Roth, A., & Häusser, M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of Neurophysiology, 85, 926–937.PubMedGoogle Scholar
  32. Weiss, T. F. (1996). Cellular biophysics. Cambridge, MA: MIT Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonUSA
  2. 2.Department of Biomedical EngineeringBoston UniversityBostonUSA
  3. 3.Department of Biomedical Engineering, Center for BioDynamics, and Center for Memory and BrainBoston UniversityBostonUSA

Personalised recommendations