Advertisement

Journal of Computational Neuroscience

, Volume 23, Issue 2, pp 143–168 | Cite as

Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: A multicompartmental model study

  • Alexander O. KomendantovEmail author
  • Natalia A. Trayanova
  • Jeffrey G. Tasker
Article

Abstract

Magnocellular neuroendocrine cells (MNCs) of the hypothalamus synthesize the neurohormones vasopressin and oxytocin, which are released into the blood and exert a wide spectrum of actions, including the regulation of cardiovascular and reproductive functions. Vasopressin- and oxytocin-secreting neurons have similar morphological structure and electrophysiological characteristics. A realistic multicompartmental model of a MNC with a bipolar branching structure was developed and calibrated based on morphological and in vitro electrophysiological data in order to explore the roles of ion currents and intracellular calcium dynamics in the intrinsic electrical MNC properties. The model was used to determine the likely distributions of ion conductances in morphologically distinct parts of the MNCs: soma, primary dendrites and secondary dendrites. While reproducing the general electrophysiological features of MNCs, the model demonstrates that the differential spatial distributions of ion channels influence the functional expression of MNC properties, and reveals the potential importance of dendritic conductances in these properties.

Keywords

Hypothalamic neuron Oxytocin Vasopressin Dendritic conductance Multicompartmental model 

Notes

Acknowledgments

We thank Dr. Cherif Boudaba for providing recordings of MNC spiking activity. This work was supported by U.S. Department of Energy Grant DE-FG02-01ER63119 (to the Tulane University Center for Computational Science), and National Institutes of Health grants NS039099 (to J. G. Tasker) and HL063195 (to N.A. Trayanova).

References

  1. Abel, H. J., Lee, J. C., Callaway, J. C., & Foehring, R. C. (2004). Relationships between intracellular calcium and afterhyperpolarizations in neocortical pyramidal neurons. Journal of Neurophysiology, 91, 324–335.PubMedGoogle Scholar
  2. Achard, P., & De Schutter, E. (2006). Complex parameter landscape for a complex neuron model. PLoS Comput Biol., 2, e94.PubMedGoogle Scholar
  3. An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., et al. (2000). Modulation of A-type potassium channels by a family of calcium sensors. Nature, 403, 553–556.PubMedGoogle Scholar
  4. Andrew, R. D., & Dudek, F. E. (1984a). Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells. Journal of Neurophysiology, 51, 552–566.PubMedGoogle Scholar
  5. Andrew, R. D., & Dudek, F. E. (1984b). Intrinsic inhibition in magnocellular neuroendocrine cells of rat hypothalamus. Journal of Physiology, 353, 171–185.PubMedGoogle Scholar
  6. Aoyagi, T., Kang, Y., Terada, N., Kaneko, T., & Fukai, T. (2002). The role of Ca2+-dependent cationic current in generating gamma frequency rhythmic bursts: Modeling study. Neuroscience, 115, 1127–1138.PubMedGoogle Scholar
  7. Armstrong, W. E. (1995). Morphological and electrophysiological classification of hypothalamic supraoptic neurons. Progress in Neurobiology, 47, 291–339.PubMedGoogle Scholar
  8. Armstrong, W. E., Smith, B. N., & Tian, M. (1994). Electrophysiological characteristics of immunochemically identified rat oxytocin and vasopressin neurones in vitro. Journal of Physiology, 475, 115–128.PubMedGoogle Scholar
  9. Armstrong, W. E., & Stern, J. E. (1997). Electrophysiological and morphological characteristics of neurons in perinuclear zone of supraoptic nucleus. Journal of Neurophysiology, 78, 2427–2437.PubMedGoogle Scholar
  10. Armstrong, W. E., & Stern, J. E. (1998). Electrophysiological distinctions between oxytocin and vasopressin neurons in the supraoptic nucleus. Advances in Experimental Medicine and Biology, 449, 67–77.PubMedGoogle Scholar
  11. Bains, J. S. (2002). Dendritic action potentials in magnocellular neurons. Progress in Brain Research, 139, 225–234.PubMedCrossRefGoogle Scholar
  12. Bischofberger, J., & Jonas, P. (1997). Action potential propagation into the presynaptic dendrites of rat mitral cells. Journal of Physiology, 504, 359–365.PubMedGoogle Scholar
  13. Boudaba, C., Di, S., & Tasker, J. G. (2003). Presynaptic noradrenergic regulation of glutamate inputs to hypothalamic magnocellular neurones. Journal of Neuroendocrinology, 15, 803–810.PubMedCrossRefGoogle Scholar
  14. Bourque, C. W. (1986). Calcium-dependent spike after-current induces burst firing in magnocellular neurosecretory cells. Neuroscience Letters, 70, 204–209.PubMedGoogle Scholar
  15. Bourque, C. W. (1988). Transient calcium-dependent potassium current in magnocellular neurosecretory cells of the rat supraoptic nucleus. Journal of Physiology, 397, 331–347.PubMedGoogle Scholar
  16. Bourque, C. W., & Brown, D. A. (1987). Apamin and d-tubocurarine block the afterhyperpolarization of rat supraoptic neurosecretory neurons. Neuroscience Letters, 82, 185–190.PubMedGoogle Scholar
  17. Bourque, C. W., Randle, J. C., & Renaud, L. P. (1985). Calcium-dependent potassium conductance in rat supraoptic nucleus neurosecretory neurons. Journal of Neurophysiology, 54, 1375–1382.PubMedGoogle Scholar
  18. Bourque, C. W., & Renaud, L. P. (1985). Activity dependence of action potential duration in rat supraoptic neurosecretory neurons recorded in vitro. Journal of Physiology, 363, 429–439.PubMedGoogle Scholar
  19. Brimble, M. J., & Dyball, R. E. (1977). Characterization of the responses of oxytocin- and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. Journal of Physiology, 271, 253–271.PubMedGoogle Scholar
  20. Brown, C. H., & Bourque, C. W. (2004). Autocrine feedback inhibition of plateau potentials terminates phasic bursts in magnocellular neurosecretory cells of the rat supraoptic nucleus. Journal of Physiology, 557, 949–960.PubMedGoogle Scholar
  21. Brown, C. H., Leng, G., Ludwig, M., & Bourque, C. W. (2006). Endogenous activation of supraoptic nucleus kappa-opioid receptors terminates spontaneous phasic bursts in rat magnocellular neurosecretory cells. Journal of Neurophysiology, 95, 3235–3244.PubMedGoogle Scholar
  22. Callaway, J. C., & Ross, W. N. (1995). Frequency-dependent propagation of sodium action potentials in dendrites of hippocampal CA1 pyramidal neurons. Journal of Neurophysiology, 74, 1395–1403.PubMedGoogle Scholar
  23. Canavier, C. C. (1999). Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: A computational approach. Journal of Computational Neuroscience, 6, 49–69.PubMedGoogle Scholar
  24. Chevaleyre, V., Moos, F. C., & Desarmenien, M. G. (2001). Correlation between electrophysiological and morphological characteristics during maturation of rat supraoptic neurons. European Journal of Neuroscience, 13, 1136–1146.PubMedGoogle Scholar
  25. Dopico, A. M., Widmer, H., Wang, G., Lemos, J. R., & Treistman, S. N. (1999). Rat supraoptic magnocellular neurones show distinct large conductance, Ca2+-activated K+ channel subtypes in cell bodies versus nerve endings. Journal of Physiology, 519, 101–114.PubMedGoogle Scholar
  26. Duprat, F., Lesage, F., Fink, M., Reyes, R., Heurteaux, C., & Lazdunski, M. (1997). TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO Journal, 16, 5464–5471.PubMedGoogle Scholar
  27. Egorov, A. V., Hamam, B. N., Fransen, E., Hasselmo, M. E., & Alonso, A. A. (2002). Graded persistent activity in entorhinal cortex neurons. Nature, 420, 173–178.PubMedGoogle Scholar
  28. Erickson, K. R., Ronnekleiv, O. K., & Kelly, M. J. (1993). Role of a T-type calcium current in supporting a depolarizing potential, damped oscillations, and phasic firing in vasopressinergic guinea pig supraoptic neurons. Neuroendocrinology, 57, 789–800.PubMedGoogle Scholar
  29. Fisher, T. E., & Bourque, C. W. (1995). Voltage-gated calcium currents in the magnocellular neurosecretory cells of the rat supraoptic nucleus. Journal of Physiology, 486, 571–580.PubMedGoogle Scholar
  30. Fisher, T. E., Voisin, D. E., & Bourque, C. W. (1998). Density of transient K+ current influences excitability in acutely isolated vasopressin and oxytocin neurones of rat hypothalamus. Journal of Physiology, 511, 423–432.PubMedGoogle Scholar
  31. Foehring, R. C., & Armstrong, W. E. (1996). Pharmacological dissection of high-voltage-activated Ca2+ current types in acutely dissociated rat supraoptic magnocellular neurons. Journal of Neurophysiology, 76, 977–983.PubMedGoogle Scholar
  32. Ghamari-Langroudi, M., & Bourque, C. W. (2002). Flufenamic acid blocks depolarizing afterpotentials and phasic firing in rat supraoptic neurones. Journal of Physiology, 545, 537–542.PubMedGoogle Scholar
  33. Ghamari-Langroudi, M., & Bourque, C. W. (2004). Muscarinic receptor modulation of slow afterhyperpolarization and phasic firing in rat supraoptic nucleus neurons. Journal of Neuroscience, 24, 7718–7726.PubMedGoogle Scholar
  34. Golding, N. L., & Spruston, N. (1998). Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron, 21, 1189–1200.PubMedGoogle Scholar
  35. Goldstein, S. A., Bockenhauer, D., O’Kelly, I., & Zilberberg, N. (2001). Potassium leak channels and the KCNK family of two-P-domain subunits. Nature Reviews. Neuroscience, 2, 175–184, 2001.PubMedGoogle Scholar
  36. Greffrath, W., Magerl, W., Disque-Kaiser, U., Martin, E., Reuss, S., & Boehmer, G. (2004). Contribution of Ca2+-activated K+ channels to hyperpolarizing after-potentials and discharge pattern in rat supraoptic neurones. Journal of Neuroendocrinology, 16, 577–588.PubMedGoogle Scholar
  37. Greffrath, W., Martin, E., Reuss, S., & Boehmer, G. (1998). Components of after-hyperpolarization in magnocellular neurones of the rat supraoptic nucleus in vitro. Journal of Physiology, 513, 493–506.PubMedGoogle Scholar
  38. Guinamard, R., Chatelier, A., Demion, M., Potreau, D., Patri, S., Rahmati, M., et al. (2004). Functional characterization of a Ca2+-activated non-selective cation channel in human atrial cardiomyocytes. Journal of Physiology, 558, 75–83.PubMedGoogle Scholar
  39. Guinamard, R., Rahmati, M., Lenfant, J., & Bois, P. (2002). Characterization of a Ca2+-activated nonselective cation channel during dedifferentiation of cultured rat ventricular cardiomyocytes. Journal of Membrane Biology, 188, 127–135.PubMedGoogle Scholar
  40. Hairer, E., & Wanner, E. (1996). Solving ordinary differential equations. II. Stiff and differential-algebraic problems. Springer Series in Computational Mathematics, 14, 118–130, 565–576.Google Scholar
  41. Han, J., Gnatenco, C., Sladek, C. D., & Kim, D. (2003). Background and tandem-pore potassium channels in magnocellular neurosecretory cells of the rat supraoptic nucleus. Journal of Physiology, 546, 625–639.PubMedGoogle Scholar
  42. Hatton, G. I., & Li, Z. (1998). Mechanisms of neuroendocrine cell excitability. Advances in Experimental Medicine and Biology, 449, 79–95.PubMedGoogle Scholar
  43. Häusser, M., Spruston, N., & Stuart, G. J. (2000). Diversity and dynamics of dendritic signaling. Science, 290, 739–744.PubMedGoogle Scholar
  44. Hille, B. (2001). Ionic channels of excitable membranes (3rd ed.). Sunderland, MA: Sinauer.Google Scholar
  45. Hirasawa, M., Mouginot, D., Kozoriz, M. G., Kombian, S. B., & Pittman, Q. J. (2003). Vasopressin differentially modulates non-NMDA receptors in vasopressin and oxytocin neurons in the supraoptic nucleus. Journal of Neuroscience, 23, 4270–4277.PubMedGoogle Scholar
  46. Hoffman, D. A., Magee, J. C., Colbert, C. M., & Johnston, D. (1997). K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature, 387, 869–875.PubMedGoogle Scholar
  47. Hoffman, N. W., Tasker, J. G., & Dudek, F. E. (1991). Immunohistochemical differentiation of electrophysiologically defined neuronal populations in the region of the hypothalamic paraventricular nucleus of the rat. Journal of Comparative Neurology, 307, 405–416.PubMedGoogle Scholar
  48. Johnston, D., Hoffman, D. A., Magee, J. C., Poolos, N. P., Watanabe, S., Colbert, C. M., et al. (2000). Dendritic potassium channels in hippocampal pyramidal neurons. Journal of Physiology, 525, 75–81.PubMedGoogle Scholar
  49. Joux, N., Chevaleyre, V., Alonso, G., Boissin-Agasse, L., Moos, F. C., Desarmenien, M. G., et al. (2001). High voltage-activated Ca2+ currents in rat supraoptic neurones: Biophysical properties and expression of the various channel alpha1 subunits. Journal of Neuroendocrinology, 13, 638–649.PubMedGoogle Scholar
  50. Kang, Y., Okada, T., & Ohmori, H. (1998). A phenytoin-sensitive cationic current participates in generating the afterdepolarization and burst afterdischarge in rat neocortical pyramidal cells. European Journal of Neuroscience, 10, 1363–1375.PubMedGoogle Scholar
  51. Kirkpatrick, K., & Bourque, C. W. (1996). Activity dependence and functional role of the apamin-sensitive K+ current in rat supraoptic neurones in vitro. Journal of Physiology, 494, 389–398.PubMedGoogle Scholar
  52. Komendantov, A. O., & Canavier, C. C. (2002). Electrical coupling between model midbrain dopamine neurons: Effect on firing pattern and synchrony. Journal of Neurophysiology, 87, 1526–1541.PubMedGoogle Scholar
  53. Komendantov, A. O., Komendantova, O. G., Johnson, S. W., & Canavier, C. C. (2004). A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. Journal of Neurophysiology, 91, 346–357.PubMedGoogle Scholar
  54. Komendantov, A. O., Trayanova, N. A., & Tasker, J. G. (2002). Roles of intrinsic ionic currents and excitatory synaptic inputs in burst generation in oxytocin-secreting neurons: A computational study (Abstract). In Soc. Neurosci. 32nd Annual Meeting, Nov. 2–7, 2002, Orlando, FL, Program No. 273.4. (Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2002. CD-ROM).Google Scholar
  55. Komendantov, A. O., Trayanova, N. A., & Tasker, J. G. (2003). Roles of synaptic inputs and retrograde signalling in burst firing in a model of hypothalamic vasopressin neurons (Abstract). In Soc. Neurosci. 33rd Annual Meeting, Nov. 8–12, 2003, New Orleans, LA, Program No. 612.17. (Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2003. CD-ROM).Google Scholar
  56. Lancaster, B., & Adams, P. R. (1986). Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. Journal of Neurophysiology, 55, 1268–1282.PubMedGoogle Scholar
  57. Lancaster, B., & Nicoll, R. A. (1987). Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. Journal of Physiology, 389, 187–203.PubMedGoogle Scholar
  58. Larkum, M. E., Rioult, M. G., & Luscher, H. R. (1996). Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures. Journal of Neurophysiology, 75, 154–170.PubMedGoogle Scholar
  59. Leonoudakis, D., Gray, A. T., Winegar, B. D., Kindler, C. H., Harada, M., Taylor, D. M. C.-R., et al.(1998). An open rectifier potassium channel with two pore domains in tandem cloned from rat cerebellum. Journal of Neuroscience, 18, 868–877.PubMedGoogle Scholar
  60. Lesage, F., & Lazdunski, M. (2000). Molecular and functional properties of two-pore-domain potassium channels. American Journal of Physiology. Renal Physiology, 279, F793–F801.PubMedGoogle Scholar
  61. Li, Z., Decavel, C., & Hatton, G. I. (1995). Calbindin-D28k: Role in determining intrinsically generated firing patterns in rat supraoptic neurones. Journal of Physiology, 488, 601–608.PubMedGoogle Scholar
  62. Li, Z., & Hatton, G. I. (1997a). Ca2+ release from internal stores: Role in generating depolarizing after-potentials in rat supraoptic neurones. Journal of Physiology, 498, 339–350.PubMedGoogle Scholar
  63. Li, Z., & Hatton, G. I. (1997b). Reduced outward K+ conductances generate depolarizing after-potentials in rat supraoptic nucleus neurones. Journal of Physiology, 505, 95–106.PubMedGoogle Scholar
  64. Liman, E. R. (2003). Regulation by voltage and adenine nucleotides of a Ca2+-activated cation channel from hamster vomeronasal sensory neurons. Journal of Physiology, 548, 777–787.PubMedGoogle Scholar
  65. Luther, J. A., Halmos, K. C., & Tasker, J. G. (2000). A slow transient potassium current expressed in a subset of neurosecretory neurons of the hypothalamic paraventricular nucleus. Journal of Neurophysiology, 84, 1814–1825.PubMedGoogle Scholar
  66. Luther, J. A., & Tasker, J. G. (2000). Voltage-gated currents distinguish parvocellular from magnocellular neurones in the rat hypothalamic paraventricular nucleus. Journal of Physiology, 523, 193–209.PubMedGoogle Scholar
  67. MacDermott, A. B., & Weight, F. F. (1982). Action potential repolarization may involve a transient, Ca2+-sensitive outward current in a vertebrate neurone. Nature, 300, 185–188.PubMedGoogle Scholar
  68. Magee, J. C., & Johnston, D. (1995). Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. Journal of Physiology, 487, 67–90.PubMedGoogle Scholar
  69. Mainen, Z. F., & Sejnowski, T. J. (1999). Modeling active dendritic processes in pyramidal neurons. In Methods in neuronal modeling. From ions to networks (2nd ed., pp. 171–209). Cambridge, MA: MIT Press.Google Scholar
  70. Marion, N. V., & Tavalin, S. J. (1998). Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature, 395, 900–905.Google Scholar
  71. Marty, A. (1981). Ca2+-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature, 291, 497–499.PubMedGoogle Scholar
  72. Marty, A., & Neher, E. (1985). Potassium channels in cultured bovine adrenal chromaffin cells. Journal of Physiology, 367, 117–141.PubMedGoogle Scholar
  73. Mason, W. T., & Leng, G. (1984). Complex action potential waveform recorded from supraoptic and paraventicular neurons in the rat: Evidence for sodium and calcium spike components at different membrane sites. Experimental Brain Research, 56, 135–143.Google Scholar
  74. Migliore, M., & Shepherd, G. M. (2002). Emerging rules for the distributions of active dendritic conductances. Nature Reviews. Neuroscience, 3, 362–370.PubMedGoogle Scholar
  75. Millhouse, O. E. (1979). A Golgi anatomy of the rodent hypothalamus. In Anatomy of the hypothalamus (Handbook of the hypothalamus; v.1) (pp. 221–265). New York: Marcell Dekker.Google Scholar
  76. Oliet, S. H., & Bourque, C. W. (1992). Properties of supraoptic magnocellular neurones isolated from the adult rat. Journal of Physiology, 455, 291–306.PubMedGoogle Scholar
  77. Partridge, L. D., Muller, T. H., & Swandulla, D. (1994). Calcium-activated non-selective channels in the nervous system. Brain Research Brain Res Reviews, 19, 319–325.Google Scholar
  78. Poulain, D. A., & Wakerley, J. B. (1982). Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience, 7, 773–808.PubMedGoogle Scholar
  79. Poulain, D. A., Wakerley, J. B., & Dyball, R. E. (1977). Electrophysiological differentiation of oxytocin- and vasopressin-secreting neurones. Proceedings of the Royal Society of London. Series B, Biological Sciences, 196, 367–384.PubMedCrossRefGoogle Scholar
  80. Prinz, A. A., Billimoria, C. P., & Marder, E. (2003). Alternative to hand-tuning conductance-based models: Construction and analysis of databases of model neurons. Journal of Neurophysiology, 90, 3998–4015.PubMedGoogle Scholar
  81. Randle, J. C., Bourque, C. W., & Renaud, L. P. (1986). Serial reconstruction of Lucifer yellow-labeled supraoptic nucleus neurons in perfused rat hypothalamic explants. Neuroscience, 17, 453–467.PubMedGoogle Scholar
  82. Roper, P., Callaway, J., & Armstrong, W. (2004). Burst initiation and termination in phasic vasopressin cells of the rat supraoptic nucleus: A combined mathematical, electrical, and calcium fluorescence study. Journal of Neuroscience, 24, 4818–4831.PubMedGoogle Scholar
  83. Roper, P., Callaway, J., Shevchenko, T., Teruyama, R., & Armstrong, W. (2003). AHP’s, HAP’s and DAP’s: How potassium currents regulate the excitability of rat supraoptic neurones. Journal of Computational Neuroscience, 15, 367–389.PubMedGoogle Scholar
  84. Sah, P., & Bekkers, J. M. (1996). Apical dendritic location of slow afterhyperpolarization current in hippocampal pyramidal neurons: Implications for the integration of long-term potentiation. Journal of Neuroscience, 16, 4537–4542.PubMedGoogle Scholar
  85. Sah, P., & Davies, P. (2000). Calcium-activated potassium currents in mammalian neurons. Clinical and Experimental Pharmacology and Physiology, 27, 657–663.PubMedGoogle Scholar
  86. Siemen, D. (1993). Nonselective cation channels. EXS, 66, 3–25.PubMedGoogle Scholar
  87. Stern, J. E., & Armstrong, W. E. (1995). Electrophysiological differences between oxytocin and vasopressin neurones recorded from female rats in vitro. Journal of Physiology, 488, 701–708.PubMedGoogle Scholar
  88. Stern, J. E., & Armstrong, W. E. (1996). Changes in the electrical properties of supraoptic nucleus oxytocin and vasopressin neurons during lactation. Journal of Neuroscience, 16, 4861–4871.PubMedGoogle Scholar
  89. Stern, J. E., & Armstrong, W. E. (1997). Sustained outward rectification of oxytocinergic neurones in the rat supraoptic nucleus: Ionic dependence and pharmacology. Journal of Physiology, 500, 497–508.PubMedGoogle Scholar
  90. Stern, J. E., & Armstrong, W. E. (1998). Reorganization of the dendritic trees of oxytocin and vasopressin neurons of the rat supraoptic nucleus during lactation. Journal of Neuroscience, 18, 841–853.PubMedGoogle Scholar
  91. Stuart, G. J., & Sakmann, B. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature, 367, 69–72.PubMedGoogle Scholar
  92. Sun, X., Gu, X. Q., & Haddad, G. G. (2003). Calcium influx via L- and N-type calcium channels activates a transient large-conductance Ca2+-activated K+ current in mouse neocortical pyramidal neurons. Journal of Neuroscience, 23, 3639–3648.PubMedGoogle Scholar
  93. Tanaka, M., Cummins, T. R., Ishikawa, K., Black, J. A., Ibata, Y., & Waxman, S. G. (1999). Molecular and functional remodeling of electrogenic membrane of hypothalamic neurons in response to changes in their input. Proceedings of the National Academy of Sciences of the United States of America, 96, 1088–1093.PubMedGoogle Scholar
  94. Tasker, J. G., & Dudek, F. E. (1991). Electrophysiological properties of neurones in the region of the paraventricular nucleus in slices of rat hypothalamus. Journal of Physiology, 434, 271–293.PubMedGoogle Scholar
  95. Teruyama, R., & Armstrong, W. E. (2002). Changes in the active membrane properties of rat supraoptic neurones during pregnancy and lactation. Journal of Neuroendocrinology, 14, 933–944.PubMedGoogle Scholar
  96. Teruyama, R., & Armstrong, W. E. (2006). Characterization of the fast depolarizing after-potential in vasopressin neurons in the supraoptic nucleus (Abstract). In Soc. Neurosci. 36th Annual Meeting, Oct. 14–18, 2006, Atlanta, GA, Program No. 153.8. (Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2006. CD-ROM).Google Scholar
  97. Teulon, J. (2000). Ca2+-activated non-selective cation channels. In M. Endo, Y. Kurachi & M. Mishina (Eds.), Pharmacology of ionic channel function: Activators and inhibitors (pp. 625–649). Berlin: Springer.Google Scholar
  98. Thorn, P., & Petersen, O. H. (1993). Nonselective cation channels in exocrine gland cells. EXS, 66, 185–200.PubMedGoogle Scholar
  99. Vergara, C., Latorre, R., Marrion, N. V., & Adelman, J. P. (1998). Calcium-activated potassium channels. Current Opinion in Neurobiology, 8, 321–329.PubMedGoogle Scholar
  100. Vogalis, F., Harvey, J. R., Lohman, R. J., & Furness, J. B. (2002). Action potential afterdepolarization mediated by a Ca2+-activated cation conductance in myenteric AH neurons. Neuroscience, 115, 375–393.PubMedGoogle Scholar
  101. Wakerley, J. B., & Lincoln, D. W. (1973). The milk-ejection reflex of the rat: A 20- to 40-fold acceleration in the firing of paraventricular neurones during oxytocin release. Journal of Endocrinology, 57, 477–493.PubMedCrossRefGoogle Scholar
  102. Widmer, H., Boissin-Agasse, L., Richard, P., & Desarmenien, M. G. (1997). Differential distribution of a potassium current in immunocytochemically identified supraoptic magnocellular neurones of the rat. Neuroendocrinology, 65, 229–237.PubMedGoogle Scholar
  103. Wilson, C. J., & Callaway, J. C. (2000). Coupled oscillator model of the dopaminergic neuron of the substantia nigra. Journal of Neurophysiology, 83, 3084–3100.PubMedGoogle Scholar
  104. Womack, M. D., & Khodakhah, K. (2002). Characterization of large conductance Ca2+-activated K+ channels in cerebellar Purkinje neurons. European Journal of Neuroscience, 16, 1214–1222.PubMedGoogle Scholar
  105. Xia, X. M., Fakler, B., Rivard, A., Wayman, G., Johnson-Pais, T., Keen, J. E., et al. (1998). Mechanisms of calcium gating in small-conductance calcium-activated potassium channels. Nature, 395, 503–507.PubMedGoogle Scholar
  106. Zhu, Z. T., Munhall, A., Shen, K. Z., & Johnson, S. W. (2004). Calcium-dependent subthreshold oscillations determine bursting activity induced by N-methyl-D-aspartate in rat subthalamic neurons in vitro. European Journal of Neuroscience, 19, 1296–1304.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Alexander O. Komendantov
    • 1
    • 5
    Email author
  • Natalia A. Trayanova
    • 1
    • 2
  • Jeffrey G. Tasker
    • 1
    • 3
    • 4
  1. 1.Center for Computational ScienceTulane UniversityNew OrleansUSA
  2. 2.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Division of Neurobiology, Department of Cell and Molecular BiologyTulane UniversityNew OrleansUSA
  4. 4.Neuroscience ProgramTulane UniversityNew OrleansUSA
  5. 5.Department of Neurobiology and AnatomyDrexel University College of MedicinePhiladelphiaUSA

Personalised recommendations