Journal of Computational Neuroscience

, Volume 22, Issue 3, pp 327–345 | Cite as

Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity

  • Naoki MasudaEmail author
  • Hiroshi Kori


Spike-timing-dependent plasticity (STDP) with asymmetric learning windows is commonly found in the brain and useful for a variety of spike-based computations such as input filtering and associative memory. A natural consequence of STDP is establishment of causality in the sense that a neuron learns to fire with a lag after specific presynaptic neurons have fired. The effect of STDP on synchrony is elusive because spike synchrony implies unitary spike events of different neurons rather than a causal delayed relationship between neurons. We explore how synchrony can be facilitated by STDP in oscillator networks with a pacemaker. We show that STDP with asymmetric learning windows leads to self-organization of feedforward networks starting from the pacemaker. As a result, STDP drastically facilitates frequency synchrony. Even though differences in spike times are lessened as a result of synaptic plasticity, the finite time lag remains so that perfect spike synchrony is not realized. In contrast to traditional mechanisms of large-scale synchrony based on mutual interaction of coupled neurons, the route to synchrony discovered here is enslavement of downstream neurons by upstream ones. Facilitation of such feedforward synchrony does not occur for STDP with symmetric learning windows.


Spike-timing-dependent plasticity Synchronization Feedforward networks Complex networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, L. F., & Nelson, S. B. (2000). Synaptic plasticity: Taming the beast. Nature Neuroscience Supp., 3, 1178–1183.CrossRefGoogle Scholar
  2. Bienenstock, E. (1991). Notes on the growth of a composition machine. In D. Andler, E. Bienenstock, & B. Laks (Eds.), Proceedings of the First Interdisciplinary Workshop on Compositionality in Cognition and Neural Networks (pp. 25–43). Abbaye de Royaumont, France.Google Scholar
  3. Bienenstock, E. (1995). A model of neocortex. Network: Computation in Neural Systems, 6, 179–224.CrossRefGoogle Scholar
  4. Braunstein, L. A., Buldyrev, S. V., Cohen, R., Havlin, S., & Stanley, H. E. (2003). Optimal paths in disordered complex networks. Physical Review Letters, 91, 168701.PubMedCrossRefGoogle Scholar
  5. Bell, C. C., Han, V. Z., Sugawara, Y., & Grant, K. (1997). Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature, 387, 278–281.PubMedCrossRefGoogle Scholar
  6. Bi, G., & Poo, M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18(24), 10464–10472.PubMedGoogle Scholar
  7. Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.PubMedCrossRefGoogle Scholar
  8. Dan, Y., & Poo, M. (1992). Hebbian depression of isolated neuromuscular synapses in vitro. Science, 256, 1570–1573.PubMedCrossRefGoogle Scholar
  9. Diesmann, M., Gewaltig, M.-O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402, 529–533.PubMedCrossRefGoogle Scholar
  10. Froemke, R. C., & Dan, Y. (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature, 416, 433–438.PubMedCrossRefGoogle Scholar
  11. Gerstner, W., & van Hemmen, J. L. (1993). Coherence and incoherence in a globally coupled ensemble of pulse-emitting units. Physical Review Letters, 71, 312–315.PubMedCrossRefGoogle Scholar
  12. Gerstner, W., Kempter, R., van Hemmen, J. L., & Wagner, H. (1996). A neuronal learning rule for sub-millisecond temporal coding. Nature, 383, 76–78.PubMedCrossRefGoogle Scholar
  13. Gerstner, W. (2000) Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking. Neural Computation, 12, 43–89.PubMedCrossRefGoogle Scholar
  14. Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models. Cambridge: Cambridge University Press.Google Scholar
  15. Glass, L., & Mackey, M. C. (1988). From clocks to chaos—The rhythms of life. Princeton: Princeton University Press.Google Scholar
  16. Hansel, D., Mato, G., & Meunier, C. (1993). Phase dynamics for weakly coupled Hodgkin–Huxley neurons. Europhysics Letters, 23(5), 367–372.Google Scholar
  17. Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Computation, 7, 307–337.PubMedGoogle Scholar
  18. Horn, D., Levy, N., Meilijson, I., & Ruppin, E. (2000). Distributed synchrony of spiking neurons in a Hebbian cell assembly. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in Neural Information Processing Systems, (Vols. 25–43, pp. 129–135). Cambridge, MA: MIT.Google Scholar
  19. Hutcheon, B., & Yarom ,Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends in Neurosciences, 23(5), 216–222.PubMedCrossRefGoogle Scholar
  20. Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.CrossRefGoogle Scholar
  21. Izhikevich, E. M. (2006). Polychronization: Computation with spikes. Neural Computation, 18, 245–282.PubMedCrossRefGoogle Scholar
  22. Izhikevich, E. M., Gally, J. A., & Edelman, G.M. (2004). Spike-timing dynamics of neuronal groups. Cerebral Cortex, 14(8), 933–944.PubMedCrossRefGoogle Scholar
  23. Jefferys, J. G. R., Traub, R. D., & Whittington, M. A. (1996). Neuronal networks for induced ‘40 Hz’ rhythms. Trends in Neurosciences, 19(5), 202–208.PubMedCrossRefGoogle Scholar
  24. Karbowski, J., & Ermentrout, G. B. (2002). Synchrony arising from a balanced synaptic plasticity in a network of heterogeneous neural oscillators. Physical Review E, 65, 031902.CrossRefGoogle Scholar
  25. Kempter, R., Gerstner, W., & van Hemmen, J. L. (1999). Hebbian learning and spiking neurons. Physical Review E, 59, 4498–4514.CrossRefGoogle Scholar
  26. Kori, H. (2003). Slow switching in a population of delayed pulse-coupled oscillators. Physical Review E, 68, 021919.CrossRefGoogle Scholar
  27. Kori, H., & Kuramoto, Y. (2001). Slow switching in globally coupled oscillators: Robustness and occurrence through delayed coupling. Physical Review E, 63, 046214.CrossRefGoogle Scholar
  28. Kori, H., & Mikhailov, A. S. (2004). Entrainment of randomly coupled oscillator networks by a pacemaker. Physical Review Letters, 93, 254101.PubMedCrossRefGoogle Scholar
  29. Kori, H., & Mikhailov A. S. (2006). Strong effects of network architecture in the entrainment of coupled oscillator systems. Physical Review E, 74, 066115Google Scholar
  30. Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer.Google Scholar
  31. Kuramoto, Y. (1991). Collective synchronization of pulse-coupled oscillators and excitable units. Physica D, 50, 15–30.CrossRefGoogle Scholar
  32. Lengyel, M., Kwag, J., Paulsen, O., & Dayan, P. (2005). Matching storage and recall: Hippocampal spike timing-dependent plasticity and phase response curves. Nature Neuroscience, 8, 1677–1683.PubMedCrossRefGoogle Scholar
  33. Levy, N., Horn, D., Meilijson, I., & Ruppin, E. (2001). Distributed synchrony in a cell assembly of spiking neurons. Neural Networks, 14, 815–824.PubMedCrossRefGoogle Scholar
  34. Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–215.PubMedCrossRefGoogle Scholar
  35. Masuda, N., Aihara, K. (2004). Self-organizing dual coding based on spike-time-dependent plasticity. Neural Computation, 16, 627–663.PubMedCrossRefGoogle Scholar
  36. Mehring, C., Hehl, U., Kubo, M., Diesmann, M., & Aertsen, A. (2003). Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biological Cybernetics, 88, 395–408.PubMedCrossRefGoogle Scholar
  37. Mehta, M. R., Lee, A. K., & Wilson, M. A. (2002). Role of experience and oscillations in transforming a rate code into a temporal code. Nature, 417, 741–746.PubMedCrossRefGoogle Scholar
  38. Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M., & Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 408, 584– 588.PubMedCrossRefGoogle Scholar
  39. Nowotny, T., Zhigulin, V. P., Selverston, A. I., Abarbanel, H. D. I., & Rabinovich, M. I. (2003). Enhancement of synchronization in a hybrid neural circuit by spike-timing dependent plasticity. Journal of Neuroscience, 23(30), 9776–9785.PubMedGoogle Scholar
  40. Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization—A universal concept in nonlinear sciences. Cambridge, UK: Cambridge University Press.Google Scholar
  41. Plenz, D., & Kitai, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400, 677–682.PubMedCrossRefGoogle Scholar
  42. Ramirez, J.-M., Tryba, A. K., & Peña, F. (2004). Pacemaker neurons and neuronal networks: An integrative view. Current Opinion in Neurobiology, 14, 665–674.PubMedCrossRefGoogle Scholar
  43. Reyes, A. D. (2003). Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nature Neuroscience, 6(6), 593–599.Google Scholar
  44. Ritz, R., & Sejnowski, T. J. (1997). Synchronous oscillatory activity in sensory systems: New vistas on mechanisms. Current Opinion in Neurobiology, 7, 536–546.PubMedCrossRefGoogle Scholar
  45. Seliger, P., Young, S. C., & Tsimring, L. S. (2002). Plasticity and learning in a network of coupled phase oscillators. Physical Review E, 65, 041906.CrossRefGoogle Scholar
  46. Shouval, H. Z., Bear, M. F., & Cooper, L. N. (2002). A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proceedings of the National Academy of Sciences, USA, 99(16), 10831–10836.CrossRefGoogle Scholar
  47. Singer, W., Gray, & C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18, 555–586.PubMedCrossRefGoogle Scholar
  48. Song, S., & Abbott, L. F. (2001). Cortical development and remapping through spike timing-dependent plasticity. Neuron, 32, 339–350.PubMedCrossRefGoogle Scholar
  49. Song ,S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9), 919–926.PubMedCrossRefGoogle Scholar
  50. Timme, M., Wolf, F., & Geisel, T. (2002). Prevalence of unstable attractors in networks of pulse-coupled oscillators. Physical Review Letters, 89, 154105.PubMedCrossRefGoogle Scholar
  51. van Rossum, M. C. W., Bi, G. Q., & Turrigiano, G. G. (2000). Stable Hebbian learning from spike timing-dependent plasticity. Journal of Neuroscience, 20(23), 8812–8821.PubMedGoogle Scholar
  52. Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25(46), 10786–10795.PubMedCrossRefGoogle Scholar
  53. Winfree, A. T. (1980). The geometry of biological time. New York: Springer.Google Scholar
  54. Woodin, M. A., Ganguly, K., & Poo, M. (2003). Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl transporter activity. Neuron, 39, 807–820.PubMedCrossRefGoogle Scholar
  55. Zhang, L. I., Tao, H. W., Holt, C. E., Harris, W. A., & Poo, M. (1998). A critical window for cooperation and competition among developing retinotectal synapses. Nature, 395, 37–44.PubMedCrossRefGoogle Scholar
  56. Zhigulin, V. P., & Rabinovich, M. I. (2004). An important role of spike timing dependent synaptic plasticity in the formation of synchronized neural ensembles. Neurocomputing, 58–60, 373–378.Google Scholar
  57. Zhigulin, V. P., Rabinovich, M. I., Huerta, R., & Abarbanel, H. D. I. (2003). Robustness and enhancement of neural synchronization by activity-dependent coupling. Physical Review E, 67, 021901.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Amari Research UnitRIKEN Brain Science InstituteWakoJapan
  2. 2.Department of MathematicsHokkaido UniversitySapporoJapan

Personalised recommendations