Journal of Computational Neuroscience

, Volume 23, Issue 1, pp 113–127 | Cite as

Self-influencing synaptic plasticity: Recurrent changes of synaptic weights can lead to specific functional properties

  • Minija Tamosiunaite
  • Bernd Porr
  • Florentin WörgötterEmail author


Recent experimental results suggest that dendritic and back-propagating spikes can influence synaptic plasticity in different ways (Holthoff, 2004; Holthoff et al., 2005). In this study we investigate how these signals could interact at dendrites in space and time leading to changing plasticity properties at local synapse clusters. Similar to a previous study (Saudargiene et al., 2004) we employ a differential Hebbian learning rule to emulate spike-timing dependent plasticity and investigate how the interaction of dendritic and back-propagating spikes, as the post-synaptic signals, could influence plasticity. Specifically, we will show that local synaptic plasticity driven by spatially confined dendritic spikes can lead to the emergence of synaptic clusters with different properties. If one of these clusters can drive the neuron into spiking, plasticity may change and the now arising global influence of a back-propagating spike can lead to a further segregation of the clusters and possibly the dying-off of some of them leading to more functional specificity. These results suggest that through plasticity being a spatial and temporal local process, the computational properties of dendrites or complete neurons can be substantially augmented.


Spike-timing-dependent plasticity Dendritic spike Back-propagating spike Local learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abarbanel HDI, Gibb L, Huerta R, Rabinovich MI (2003) Biophysical model of synaptic plasticity dynamics. Biol. Cybern. 89(3): 214–226.CrossRefPubMedGoogle Scholar
  2. Abarbanel HDI, Huerta R, Rabinovich MI (2002) Dynamical model of long-term synaptic plasticity. Proc. Natl. Acad. Sci. (USA) 99(15): 10132–10137.Google Scholar
  3. Bender VA, Feldman DE (2006) A dynamic spatial gradient of hebbian learning in dendrites. Neuron 51(2): 153–155 CommentaryGoogle Scholar
  4. Bi G-Q, Poo M (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24: 139–166.CrossRefPubMedGoogle Scholar
  5. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18: 10464–10472.PubMedGoogle Scholar
  6. Bliss TV, Gardner-Edwin AR (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232: 357–374.Google Scholar
  7. Castellani GC, Quinlan EM, Cooper LN, Shouval HZ (2001) A biophysical model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors. Proc. Natl. Acad. Sci. (USA) 98(22): 12772–12777.Google Scholar
  8. Eurich CW, Pawelzik K, Ernst U, Cowan JD, Milton JG (1999) Dynamics of self-organized delay adaptation. Phys. Rev. Lett. 82: 1594–1597.CrossRefGoogle Scholar
  9. Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416: 433–438.CrossRefPubMedGoogle Scholar
  10. Froemke RC, Poo M-m, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434: 221–225.CrossRefPubMedGoogle Scholar
  11. Gasparini S, Migliore M, Magee JC (2004) On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J. Neurosci. 24(49): 11046–11056.CrossRefPubMedGoogle Scholar
  12. Golding N, Kath WL, Spruston N (2001) Dichotomy of action-potential backpropagation in ca1 pyramidal neuron dendrites. J Neurophysiol. 86: 2998–3010.PubMedGoogle Scholar
  13. Golding NL, Spruston N (1998) Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21: 1189–1200.CrossRefPubMedGoogle Scholar
  14. Golding NL, Staff PN, Spurston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418: 326–331.CrossRefPubMedGoogle Scholar
  15. Govindarajan A, Kelleher RJ, Tonegawa S (2006) A clustered plasticity model of long-term memory engrams. Nature Rev. Neurosci. (Perspectives) 7: 575–583.CrossRefGoogle Scholar
  16. Hebb DO (1949) The Organization of Behavior: A Neurophychological Study. Wiley-Interscience, New York.Google Scholar
  17. Holthoff K (2004) Regenerative dendritic spikes and synaptic plasticity. Curr. Neurovasc. Res. 1(4): 381–387.CrossRefPubMedGoogle Scholar
  18. Holthoff K, Kovalchuk Y, Yuste R, Konnerth A (2004) Single-shock LTD by local dendritic spikes in pyramidal neurons of mouse visual cortex. J. Physiol. 560.1: 27–36.Google Scholar
  19. Holthoff K, Kovalchuk Y, Yuste R, Konnerth A (2005) Single-shock plasticity induced by local dendritic spikes. In Proceedings of the Göttingen NWG Conference, p. 245B.Google Scholar
  20. Karmarkar UR, Buonomano DV (2002) A model of spike-timing dependent plasticity: one or two coincidence detectors? J. Neurophysiol. 88: 507–513.Google Scholar
  21. Karmarkar UR, Najarian MT, Buonomano DV (2002) Mechanisms and significance of spike-timing dependent plasticity. Biol. Cybern. 87: 373–382.CrossRefPubMedGoogle Scholar
  22. Kempter R, Gerstner W, van Hemmen JL (1999) Hebbian learning and spiking neurons. Phys. Rev. E. 59: 4498–4515.CrossRefGoogle Scholar
  23. Koch C (1999) Biophysics of Computation. Oxford University Press.Google Scholar
  24. Larkum ME, Zhu JJ, Sakmann B (2001) Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J. Physiol. (Lond.) 533: 447–466.CrossRefGoogle Scholar
  25. Letzkus JJ, Kampa BM, Stuart GJ (2006) Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J. Neurosci. 26(41): 10420–10429.CrossRefPubMedGoogle Scholar
  26. Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275: 209–213.CrossRefPubMedGoogle Scholar
  27. Malenka RC, Nicoll RA (1999) Long-term potentiation-a decade of progress? Science 285: 1870–1874.CrossRefPubMedGoogle Scholar
  28. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275: 213–215.CrossRefPubMedGoogle Scholar
  29. Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7(6): 621–627.CrossRefPubMedGoogle Scholar
  30. Porr B, Wörgötter F (2003) Isotropic sequence order learning. Neural Comp. 15: 831–864CrossRefGoogle Scholar
  31. Rubin JE, Gerkin RC, Bi GQ, C CC (2005) Calcium time course as a signal for spike-timing dependent plasticity. J. Neurophysiol. 0–0.Google Scholar
  32. Saudargiene A, Porr B, Wörgötter F (2004) How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural Comp. 16: 595–626.CrossRefGoogle Scholar
  33. Saudargiene A, Porr B, Wörgötter F (2005a) Local learning rules: predicted influence of dendritic location on synaptic modification in spike-timing-dependent plasticity. Biol. Cybern. 92: 128– 138.CrossRefGoogle Scholar
  34. Saudargiene A, Porr B, Wörgötter F (2005b) Synaptic modifications depend on synapse location and activity: a biophysical model of STDP. Biosystems 79: 3–10.CrossRefGoogle Scholar
  35. Senn W, Markram H, Tsodyks M (2000) An algorithm for modifying neurotransmitter release probability based on pre-and postsynaptic spike timing. Neural Comp. 13: 35–67.CrossRefGoogle Scholar
  36. Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc. Natl. Acad. Sci. (USA) 99(16): 10831–10836.Google Scholar
  37. Shouval HZ, Kalantziz G (2005) Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. J. Neurophysiol. 93: 1069–1073.CrossRefPubMedGoogle Scholar
  38. Sjöström PJ, Häusser M (2006) A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51(2): 227–238.CrossRefPubMedGoogle Scholar
  39. Song S, Miller KD, Abbott LF (2000) Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neurosci. 3: 919–926.CrossRefPubMedGoogle Scholar
  40. Stuart G, Spruston N, Sakmann B, Häusser M (1997) Action potential initiation and backpropagation in neurons of the mammalian central nervous system. Trends Neurosci. 20: 125–131.CrossRefPubMedGoogle Scholar
  41. Swindale NV (1996) The development of topography in the visual cortex: a review of models. Network 7(2): 161–247.CrossRefPubMedGoogle Scholar
  42. Wang H-X, C GR, Nauen DW, Bi G-Q (2005) Coactivation and timing-dependent integration of synaptic potentiation and depression. Nature Neurosci. 8: 187–193.CrossRefPubMedGoogle Scholar
  43. Wespatat V, Tennigkeit F, Singer W (2004) Hebbian plasticity rules in fast oscillating visual cortical cells. In: FENS Forum Abstracts, FENS Lisbon, vol. 2, p. A031.2.Google Scholar
  44. Williams SR, Stuart GJ (2003) Role of dendritic synapse location in the control of action potential output. TINS 26(3): 147–154.PubMedGoogle Scholar
  45. Yeung LC, Shouval HZ, Blais BS, Cooper LN (2004) Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Proc. Natl. Acad. Sci. 101: 14943–14948.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Minija Tamosiunaite
    • 1
    • 2
  • Bernd Porr
    • 3
  • Florentin Wörgötter
    • 4
    Email author
  1. 1.Department of PsychologyUniversity of StirlingStirlingScotland
  2. 2.Department of InformaticsVytautas Magnus UniversityKaunasLithuania
  3. 3.Department of Electronics & Electrical EngineeringUniversity of GlasgowGlasgowScotland
  4. 4.Bernstein Center for Computational NeuroscienceUniversity of GöttingenGöttingenGermany

Personalised recommendations