Sound representation methods for spectro-temporal receptive field estimation

  • Patrick Gill
  • Junli Zhang
  • Sarah M. N. Woolley
  • Thane Fremouw
  • Frédéric E. Theunissen
Article

Abstract

The spectro-temporal receptive field (STRF) of an auditory neuron describes the linear relationship between the sound stimulus in a time-frequency representation and the neural response. Time-frequency representations of a sound in turn require a nonlinear operation on the sound pressure waveform and many different forms for this non-linear transformation are possible. Here, we systematically investigated the effects of four factors in the non-linear step in the STRF model: the choice of logarithmic or linear filter frequency spacing, the time-frequency scale, stimulus amplitude compression and adaptive gain control. We quantified the goodness of fit of these different STRF models on data obtained from auditory neurons in the songbird midbrain and forebrain. We found that adaptive gain control and the correct stimulus amplitude compression scheme are paramount to correctly modelling neurons. The time-frequency scale and frequency spacing also affected the goodness of fit of the model but to a lesser extent and the optimal values were stimulus dependant.

Keywords

Receptive field Zebra finch STRF Reverse correlation Auditory cortex 

References

  1. Aertsen AM, Johannesma PI (1981) The spectro-temporal receptive field. A functional characteristic of auditory neurons. Biol. Cybern. 42: 133–143.PubMedCrossRefGoogle Scholar
  2. Calhoun B, Schreiner C (1998) Spectral envelope coding in cat primary auditory cortex: Linear and non-linear effects of stimulus characteristics. European. J. Neurosci. 10: 926–940.CrossRefGoogle Scholar
  3. Cohen L (1995) Time-Frequency Analysis.Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  4. deCharms RC, Blake DT, Merzenich MM (1998) Optimizing sound features for cortical neurons. Science 280: 1439–1443.PubMedCrossRefGoogle Scholar
  5. Depireux DA, Simon JZ, Klein DJ, Shamma SA (2001) Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex. J. Neurophysiol. 85: 1220–1234.PubMedGoogle Scholar
  6. Dooling RJ (1982) Auditory perception in birds. In: DE Kroodsma, EH Miller, eds. Acoustic Communication in Birds, pp 95–130.Google Scholar
  7. Eggermont JJ, Johannesma PM, Aertsen AM (1983a) Reverse-correlation methods in auditory research. Q. Rev. Biophys. 16: 341–414.PubMedCrossRefGoogle Scholar
  8. Eggermont JJ, Aertsen AM, Johannesma PI (1983b) Prediction of the responses of auditory neurons in the midbrain of the grass frog based on the spectro-temporal receptive field. Hear. Res. 10: 191–202.PubMedCrossRefGoogle Scholar
  9. Elhilali M, Fritz JB, Klein DJ, Simon JZ, Shamma SA (2004) Dynamics of precise spike timing in primary auditory cortex. J. Neurosci. 24: 1159–1172.PubMedCrossRefGoogle Scholar
  10. Escabi MA, Schreiner CE (2002) Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain. J. Neurosci. 22: 4114–4131.PubMedGoogle Scholar
  11. Escabi MA, Miller LM, Read HL, Schreiner CE (2003) Naturalistic auditory contrast improves spectrotemporal coding in the cat inferior colliculus. J. Neurosci. 23: 11489–11504.PubMedGoogle Scholar
  12. Gentner TQ, Margoliash D (2003) Neuronal populations and single cells representing learned auditory objects. Nature 424: 669–674.PubMedCrossRefGoogle Scholar
  13. Ghazanfar AA, Nicolelis MA (2001) Feature article: The structure and function of dynamic cortical and thalamic receptive fields. Cereb. Cortex. 11: 183–193.PubMedCrossRefGoogle Scholar
  14. Gleich O, Manley GA (2000) Hearing Organ of Birds and Crocodilia. In Comparative Hearing: Birds and Reptiles RJ Dooling, RR Fay, AN Popper, eds., Springer-Verlag, New-York: pp 70–138.Google Scholar
  15. Hsu A, Borst A, Theunissen FE (2004a) Quantifying variability in neural responses and its application for the validation of model predictions. Network 15: 91–109.PubMedGoogle Scholar
  16. Hsu A, Woolley SM, Fremouw TE, Theunissen FE (2004b) Modulation power and phase spectrum of natural sounds enhance neural encoding performed by single auditory neurons. J. Neurosci. 24: 9201–9211.PubMedCrossRefGoogle Scholar
  17. Klein DJ, Depireux DA, Simon JZ, Shamma SA (2000) Robust spectro-temporal reverse correlation for the auditory system: Optimizing stimulus design. J. Comp. Neurosci. 9: 85–111.CrossRefGoogle Scholar
  18. Lewicki MS (2002) Efficient coding of natural sounds. Nat. Neurosci. 5: 356–363.PubMedCrossRefGoogle Scholar
  19. Lyon RF (1982) A computational model of filtering, detection and compression in the cochlea. In IEEE Int. Conf. Acoust., Speech and Signal Processing. Paris, IEEE, France.Google Scholar
  20. Machens CK, Wehr MS, Zador AM (2004) Linearity of cortical receptive fields measured with natural sounds. J. Neurosci. 24: 1089–1100.PubMedCrossRefGoogle Scholar
  21. Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal. and Machine Intell. 11: 674–693.CrossRefGoogle Scholar
  22. Marmarelis P, Marmarelis V (1978) Analysis of Physiological Systems. The White Noise Approach. Plenum, New York.Google Scholar
  23. Okanoya K, Dooling RJ (1987) Hearing in passerine and psittacine birds: A comparative study of absolute and masked auditory thresholds. J. Comp. Psychol. 101: 7–15.PubMedCrossRefGoogle Scholar
  24. Painter T, Spanias A (2000) Perceptual Coding of Digital Audio. Proc. of IEEE 88: 451–513.CrossRefGoogle Scholar
  25. Palmer AR, Evans EF (1982) Intensity coding in the auditory periphery of the cat: Responses of cochlear nerve and cochlear nucleus neurons to signals in the presence of bandstop masking noise. Hear. Res. 7: 305–323.PubMedCrossRefGoogle Scholar
  26. Phillips DP (1990) Neural representation of sound amplitude in the auditory cortex: Effects of noise masking. Behav Brain Res. 37: 197–214.PubMedCrossRefGoogle Scholar
  27. Phillips DP, Hall SE (1987) Responses of single neurons in cat auditory cortex to time-varying stimuli: Linear amplitude modulations. Exp Brain Res. 67: 479–492.PubMedCrossRefGoogle Scholar
  28. Ruggero MA (1992) Physiology of the Auditory Nerve. In The Mammalian Auditory Pathway: Neurophysiology RR Fay, AN Popper, eds, pp. 34–93. Springer-Verlag, New-York.Google Scholar
  29. Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory-nerve fibers in cats: Tone-burst stimuli. J. Acoust. Soc. Am. 56: 1835–1847.PubMedCrossRefGoogle Scholar
  30. Schlauch RS, DiGiovanni JJ, Ries DT (1998) Basilar membrane nonlinearity and loudness. J. Acoust. Soc. Am. 103: 2010–2020.PubMedCrossRefGoogle Scholar
  31. Schreiner CE, Calhoun BM (1994) Spectral envelope coding in cat primary auditory cortex: Properties of ripple transfer functions. Auditory Neurosci. 1: 39–61.Google Scholar
  32. Singh NC, Theunissen FE (2003) Modulation spectra of natural sounds and ethological theories of auditory processing. J. Acoust. Soc. Am. 114: 3394–3411.PubMedCrossRefGoogle Scholar
  33. Slaney M (1988) Lyon’s Cochlear Model. In Apple Technical Report: 1–79.Google Scholar
  34. Stevens SS (1956) The direct estimation of sensory magnitudes: loudness. Am. J. Psych. 69: 1–25.CrossRefGoogle Scholar
  35. Theunissen FE, Sen K, Doupe AJ (2000) Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J. Neurosci. 20: 2315–2331.PubMedGoogle Scholar
  36. Theunissen FE, David SV, Singh NC, Hsu A, Vinje W, Gallant JL (2001) Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network: Comp. Neural. Syst. 12: 1–28.CrossRefGoogle Scholar
  37. Von Békésy G (1960) Experiments in Hearing. McGraw-Hill.Google Scholar
  38. Willmore B, Smyth D (2003) Methods for first-order kernel estimation: Simple-cell receptive fields from responses to natural scenes. Network 14: 553–577.PubMedCrossRefGoogle Scholar
  39. Woolley SM, Casseday JH (2004) Response properties of single neurons in the zebra finch auditory midbrain: Response patterns, frequency coding, intensity coding, and spike latencies. J. Neurophysiol. 91: 136–151. Epub 2003 Oct. 2001.PubMedCrossRefGoogle Scholar
  40. Yao J, Zhang YT (2002) The application of bionic wavelet transform to speech signal processing in cochlear implants using neural network simulations. IEEE Trans. Biomed. Eng. 49: 1299–1309.PubMedCrossRefGoogle Scholar
  41. Zevin JD, Seidenberg MS, Bottjer SW (2004) Limits on reacquisition of song in adult zebra finches exposed to white noise. J. Neurosci. 24: 5849–5862.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Patrick Gill
    • 1
  • Junli Zhang
    • 2
  • Sarah M. N. Woolley
    • 2
  • Thane Fremouw
    • 2
  • Frédéric E. Theunissen
    • 1
    • 2
  1. 1.Biophysics GroupUniversity of California at BerkeleyBerkeley
  2. 2.Department of Psychology and Neurosciences InstituteUniversity of California at BerkeleyBerkeley

Personalised recommendations