Journal of Computational Neuroscience

, Volume 22, Issue 3, pp 297–299 | Cite as

From grids to places

BRIEF COMMUNICATION

Abstract

Hafting et al. (2005) described grid cells in the dorsocaudal region of the medial entorhinal cortex (dMEC). These cells show a strikingly regular grid-like firing-pattern as a function of the position of a rat in an enclosure. Since the dMEC projects to the hippocampal areas containing the well-known place cells, the question arises whether and how the localized responses of the latter can emerge based on the output of grid cells. Here, we show that, starting with simulated grid-cells, a simple linear transformation maximizing sparseness leads to a localized representation similar to place fields.

Keywords

Place cell Grid cell Hippocampus Entorhinal cortex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaschke T, Wiskott L (2004) CuBICA: Independent component analysis by simultaneous third- and fourth-order cumulant diagonalization. IEEE Trans. Signal Process. 52(5): 1250–1256.CrossRefGoogle Scholar
  2. Hafting T, Fyhn M, Molden S, Moser M, Moser EI (2005) Mi-crostructure of a spatial map in the entorhinal cortex. Nature 436(7052):801– 806. 10.1038/nature03721.PubMedCrossRefGoogle Scholar
  3. Hyvärinen A (1999a) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10: 626–634.CrossRefGoogle Scholar
  4. Hyvärinen A (1999b) Survey on independent component analysis. Neural Comput. Surv. 2: 94–128.Google Scholar
  5. McNaughton B, Battaglia F, Jensen O, Moser E, Moser M (2006) Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci. 7: 663–678.PubMedCrossRefGoogle Scholar
  6. Muller R (1996) A quarter century of place cells. Neuron 17:813–822.PubMedCrossRefGoogle Scholar
  7. O’Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4(6): 661–682.PubMedCrossRefGoogle Scholar
  8. Wiskott L, Sejnowski T (2002) Slow feature analysis: Unsupervised learning of invariances. Neural Comput. 14(4): 715–770.PubMedCrossRefGoogle Scholar
  9. Wyss R, König P, Verschure P (2006) A model of the ventral visual system based on temporal stability and local memory. PLOS Biol. 4(5): e120.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Institute for Theoretical BiologyHumboldt-UniversityBerlinGermany
  2. 2.Department of Computer ScienceTechnical University of BerlinBerlinGermany

Personalised recommendations