Journal of Computational Neuroscience

, Volume 22, Issue 2, pp 129–133 | Cite as

STDP rule endowed with the BCM sliding threshold accounts for hippocampal heterosynaptic plasticity

  • Lubica BenuskovaEmail author
  • Wickliffe C. Abraham


We have combined the nearest neighbour additive spike-timing-dependent plasticity (STDP) rule with the Bienenstock, Cooper and Munro (BCM) sliding modification threshold in a computational model of heterosynaptic plasticity in the hippocampal dentate gyrus. As a result we can reproduce (1) homosynaptic long-term potentiation of the tetanized input, and (2) heterosynaptic long-term depression of the untetanized input, as observed in real experiments.


Heterosynaptic plasticity Metaplasticity STDP Sliding BCM threshold 


  1. Abarbanel HDI, Huerta R, Rabinovich MI (2002) Dynamical model of long-term synaptic plasticity. Proc. Natl. Acad. Sci. USA 99(15): 10132–10137.PubMedCrossRefGoogle Scholar
  2. Abraham WC, Bear MF (1996) Metaplasticity: The plasticity of synaptic plasticity. Trends Neurosci. 19(4): 126–130.PubMedCrossRefGoogle Scholar
  3. Abraham WC, Mason-Parker SE, Bear MF, Webb S, Tate WP (2001) Heterosynaptic metaplasticity in the hippocampus in vivo: A BCM-like modifiable threshold for LTP. Proc. Natl. Acad. Sci. USA 98(19): 10924–10929.PubMedCrossRefGoogle Scholar
  4. Benuskova L, Rema V, Armstrong-James M, Ebner FF (2001) Theory for normal and impaired experience-dependent plasticity in neocortex of adult rats. Proc. Natl. Acad. Sci. USA 98(5): 2797–2802.PubMedCrossRefGoogle Scholar
  5. Bi G-q, Poo M-m (2001) Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci. 24: 139–166.PubMedCrossRefGoogle Scholar
  6. Castellani GC, Quinlan EM, Cooper LN, Shouval HZ (2001) A biophysical model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors. Proc. Natl. Acad. Sci. USA 98(22): 12772–12777.PubMedCrossRefGoogle Scholar
  7. Delorme A, Perrinet L, Thorpe SJ (2001) Network of integrate-and-fire neurons using rank order coding B: Spike timing dependent plasticity and emergence of orientation selectivity. Neurocomputing 38(40): 539–545.CrossRefGoogle Scholar
  8. Frank LM, Brown EN, Wilson MA (2001) A comparison of the firing properties of putative excitatory and inhibitory neurons from CA1 and the entorhinal cortex. J. Neurophysiol. 86(4): 2029–2049.PubMedGoogle Scholar
  9. Froemke RC, Poo M-m, Dang Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434: 221–225.PubMedCrossRefGoogle Scholar
  10. Gloveli T, Schmitz D, Empson RM, Heineman U (1997) Frequency-dependent information flow from the entorhinal cortex to the hippocampus. J. Neurophysiol. 78: 3444–3449.PubMedGoogle Scholar
  11. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6): 1569–1572.CrossRefGoogle Scholar
  12. Izhikevich EM, Desai NS (2003) Relating STDP to BCM. Neural Comput. 15: 1511–1523.PubMedCrossRefGoogle Scholar
  13. Karmarkar UR, Buonomano DV (2002) A model of spike-timing dependent plasticity: One or two coincidence detectors. J. Neurophysiol. 88: 507–513.PubMedGoogle Scholar
  14. Kimura A, Pavlides C (2000) Long-term potentiation/depotentiation are accompanied by complex changes in spontaneous unit activity in the hippocampus. J. Neurophysiol. 84: 1894–1906.PubMedGoogle Scholar
  15. McNaughton BL, Barnes CA, Andersen P (1981) Synaptic efficacy and EPSP summation in granule cells of rat fascia dentata studied in vitro. J. Neurophysiol. 46(5): 952–966.PubMedGoogle Scholar
  16. Shouval HZ, Bear MF, Cooper LN (2002a) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc. Natl. Acad. Sci. USA 99(16): 10831–10836.PubMedCrossRefGoogle Scholar
  17. Shouval HZ, Castellani GC, Blais BS, Yeung LC, Cooper LN (2002b) Converging evidence for a simplified biophysical model of synaptic plasticity. Biol. Cybern. 87: 383–391.PubMedCrossRefGoogle Scholar
  18. Tamura H, Tsumoto T, Hata Y (1992) Activity-dependent potentiation and depression of visual cortical responses to optic nerve stimulation in kittens. J. Neurophysiol. 68(5): 1603–1612.PubMedGoogle Scholar
  19. Yeung L-C, Shouval HZ, Blais BS, Cooper LN (2004) Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Proc. Natl. Acad. Sci. USA 101(41): 14943–14948.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Knowledge Engineering & Discovery Research InstituteAuckland University of TechnologyAucklandNew Zealand
  2. 2.Department of Applied Informatics, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia
  3. 3.Department of PsychologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations